Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-rfl4x Total loading time: 0.175 Render date: 2021-09-24T04:21:00.621Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Preparation and Improvement in the Electrical Properties of Lead-zinc-niobate–based Ceramics by Thermal Treatments

Published online by Cambridge University Press:  31 January 2011

Huiqing Fan
Affiliation:
School of Materials Science & Engineering, Seoul National University, Seoul, 151–742, Korea
Gun-Tae Park
Affiliation:
School of Materials Science & Engineering, Seoul National University, Seoul, 151–742, Korea
Jong-Jin Choi
Affiliation:
School of Materials Science & Engineering, Seoul National University, Seoul, 151–742, Korea
Jungho Ryu
Affiliation:
School of Materials Science & Engineering, Seoul National University, Seoul, 151–742, Korea
Hyoun-Ee Kim
Affiliation:
School of Materials Science & Engineering, Seoul National University, Seoul, 151–742, Korea
Get access

Abstract

The piezoelectric and dielectric properties of Pb(Zn1/3Nb2/3)O3 (PZN)-based ceramics were investigated. The perovskite structure of PZN ceramics was stabilized by the addition of Pb(Zn0.47Ti0.53)O3 (PZT). The highest piezoelectric properties were observed for the composition of 0.5PZN–0.5PZT, which lies on the two-phase zone of morphotropic phase boundary. For further improvements in electric properties, the specimens were thermally treated in a flowing O2 atmosphere at temperatures ranging from 860 to 1030 °C. The thermal treatment eliminated the PbO-rich amorphous intergranular layer by lead evaporation. As a result of this improvement in structure, the dielectric constant (ε′), the piezoelectric coefficient (d33), and the electromechanical coupling factor (kp), were enhanced markedly after thermal annealing at 960 °C for 8 h in an O2 atmosphere.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cross, L.E., Ferroelectrics 76, 241 (1987).CrossRefGoogle Scholar
Yamashita, Y., Am. Ceram. Soc. Bull. 74, 106 (1995).Google Scholar
Park, S-E. and Shrout, T.R., J. Appl. Phys. 82, 1804 (1997).CrossRefGoogle Scholar
Liu, S-F., Park, S-E., Shrout, T.R., and Cross, L.E., J. Appl. Phys. 85, 2810 (1999).CrossRefGoogle Scholar
Barad, Y., Lu, Y., Cheng, Z-Y., Park, S-E., and Zhang, Q.M., Appl. Phys. Lett. 77, 1247 (2000).CrossRefGoogle Scholar
Furukawa, O., Yamashita, Y., and Harata, M., Jpn. J. Appl. Phys. (Suppl.) 24, 96 (1985).CrossRefGoogle Scholar
Halliyal, A., Kumar, U., Newnham, R., and Cross, L.E., Am. Ceram. Soc. Bull. 66, 671 (1987).Google Scholar
Halliyal, A. and Safari, A., Ferroelectrics 158, 295 (1994).CrossRefGoogle Scholar
IEEE Standard on Piezoelectricity, IEEE Standard 176-1978, (IEEE, New York, 1978).Google Scholar
Jaffe, B., Cook, W.R. Jr., and Jaffe, H., Piezoelectric Ceramics (Academic Press, New York, 1971).Google Scholar
Shrout, T.R. and Swartz, S.L., Mater. Res. Bull. 18, 663 (1983).CrossRefGoogle Scholar
Guha, J.P., J. Mater. Sci. 34, 4985 (1999).CrossRefGoogle Scholar
Lucas, P. and Petuskey, W.T., J. Am. Ceram. Soc. 84, 2150 (2001).CrossRefGoogle Scholar
Jang, H.M., Oh, S.H., and Moon, J.H., J. Am. Ceram. Soc. 75, 82 (1992).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Preparation and Improvement in the Electrical Properties of Lead-zinc-niobate–based Ceramics by Thermal Treatments
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Preparation and Improvement in the Electrical Properties of Lead-zinc-niobate–based Ceramics by Thermal Treatments
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Preparation and Improvement in the Electrical Properties of Lead-zinc-niobate–based Ceramics by Thermal Treatments
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *