Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T04:07:47.106Z Has data issue: false hasContentIssue false

Preparation and characterization of sputtered TiB2 films

Published online by Cambridge University Press:  31 January 2011

Wieslaw A. Zdaniewski
Affiliation:
New Business Research, Engelhard Corporation, Edison, New Jersey 08818
Joseph Wu
Affiliation:
New Business Research, Engelhard Corporation, Edison, New Jersey 08818
Subhash C. Gujrathi
Affiliation:
Laboratoire de Physique Nucléaire, Université de Montréal, C.P. 6128, Succursale A, Montréal, Québec, Canada H3C 3J7
Kenneth Oxorn
Affiliation:
Laboratoire de Physique Nucléaire, Université de Montréal, C.P. 6128, Succursale A, Montréal, Québec, Canada H3C 3J7
Get access

Abstract

Smooth, continuous TiB2 films were deposited on TiB2−AlN composites and Si substrates by sputtering in high vacuum. Excellent adhesion between films and substrates was indicated; no film delamination was induced by Vickers indentation at high loads. Analyses by secondary ion mass and x-ray photoelectron spectroscopies showed that the films were of high purity and contained H, C, O, N, and Na elements as trace impurities. Quantitative depth profile by the elastic recoil detection (ERD) nuclear scattering technique using 30 MeV 35Cl beam revealed that the Ti/B atomic ratio was very close to 0.5 while the 10B/11B isotopic ratio was 0.250.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Flinn, D. R., McCawley, F. X., Smith, G. R., and Needham, P. B., “Electrodeposition of Erosion-Resistant Titanium Diboride Coatings”, Report of Investigation 8332, U. S. Department of the Interior, Bureau of Mines, 1979.Google Scholar
2Bliznakov, G., Peshev, P., and Niewmyski, T., J. Less-Common Met. 12, 405410 (1967).CrossRefGoogle Scholar
3Pearson, H. O. and Randich, E., Thin Solid Films 54, 119128 (1978).CrossRefGoogle Scholar
4Williams, L. M., Appl. Phys. Lett. 46 (1), 4345 (1985).CrossRefGoogle Scholar
5Wayda, A. L., Schneemeyer, L. F., and Opila, R. L., Appl. Phys. Lett. 53 (5), 361363 (1988).CrossRefGoogle Scholar
6Westwood, W. D., Bull. Mater. Res. Soc. XIII (12), 4651 (1988).Google Scholar
7Zdaniewski, W. A., Acta Metall. 37 (9), 23132320 (1989).Google Scholar
8L'Écuyer, J., Brassard, C., Cardinal, C., and Terreault, B., Nucl. Instrum. Methods 149, 271277 (1978).CrossRefGoogle Scholar
9Groleau, R., Gujrathi, S. C., and Martin, J-P., Nucl. Instrum. Methods in Phys. Res. 218, 1115 (1983).Google Scholar
10Ziegler, J. F., Handbook of Stopping Cross-sections for Energetic Ions in All Elements (Pergamon Press, 1980), Vol. B.Google Scholar
11Oxorn, K., Gujrathi, S. C., Bultena, S., Cliche, L., and Miskin, J., Nucl. Instrum. Methods in Phys. Res. B45, 166170 (1990).CrossRefGoogle Scholar
12Gujrathi, S. C., Aubry, P., Lemay, L., and Martin, J. P., Can. J. Phys. 65 (8), 950955 (1987).Google Scholar
13Rossington, C., Evans, A. G., Marshall, D. B., and Khuri-Yakub, B. T., J. Appl. Phys. 56 (10), 26392644 (1984).CrossRefGoogle Scholar
14Lawn, B. R., Evans, A. G., and Marshall, D. B., J. Am. Ceram. Soc. 63 (9–10), 574581 (1980).CrossRefGoogle Scholar
15Zdaniewski, W. A. and Brungard, N., submitted to J. Phys. Chem. Solids (1990).Google Scholar