Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-16T12:24:12.312Z Has data issue: false hasContentIssue false

Preparation and characterization of poly(tetramethyl-p-phenylenediamine)/clay hybrids via intercalative polymerization

Published online by Cambridge University Press:  31 January 2011

Guangming Chen
Affiliation:
State Key Laboratory of Engineering Plastics, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China, and Advanced Materials Laboratory (AML), National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Nobuo Iyi
Affiliation:
Advanced Materials Laboratory (AML), National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Taketoshi Fujita
Affiliation:
Advanced Materials Laboratory (AML), National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Get access

Abstract

New noncovalent bonding polymer/clay hybrids were prepared, including the polymer poly(tetramethyl-p-phenylenediamine) (poly-TMPD). Polymerization occurred in the interlayer space of clay mineral successively after intercalation of monomers. Two types of clay minerals with different surface properties—a hydrophilic lithium fluorotaeniolite (TN) and four kinds of organophilic fluorotaeniolites (org-TNs)—were used as the hosts. Powder x-ray diffraction results showed an increase of 0.7–1.0 nm in the basal spacings, indicating the formation of poly–TMPD in the interlayer space of the hosts. Intercalative polymerization was also supported by Fourier transform infrared spectroscopy. The orientation of the poly-TMPD and thermal behavior were also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novak, B.M., Adv. Mater. 5, 422 (1993).CrossRefGoogle Scholar
Lu, S., Melo, M.M., Zhao, J., Pearce, E.M., and Kwei, T.K., Macromolecules 28, 4908 (1995).CrossRefGoogle Scholar
Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., and Kamingaito, O., J. Mater. Res. 8, 1185 (1993).CrossRefGoogle Scholar
Sur, G.S., Lyu, H.L., and Mark, J.E., Polymer 42, 9783 (2001).CrossRefGoogle Scholar
Giannelis, E.P., Adv. Mater. 8, 29 (1996).CrossRefGoogle Scholar
Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., and Kamingaito, O., J. Mater. Res. 8, 1179 (1993).CrossRefGoogle Scholar
Chen, G., Ma, Y., and Qi, Z., Scr. Mater. 44, 125 (2001).CrossRefGoogle Scholar
Choi, Y.S., Choi, M.H., Wang, K., Kim, S.O., Kim, Y.K., and Chung, I.J., Macromolecules 34, 8978 (2001).CrossRefGoogle Scholar
Olphen, H. Van, in An Introduction to Clay Colloid Chemistry, 2nd ed. (Wiley-Interscience, New York, 1977); B.K.G. Theng, in The Chemistry of Clay Organic Reactions (Adam Hilger, London, U.K., 1974).Google Scholar
Cohen, S.G., Parola, A., and Parsons, G.H., Chem. Rev. 73, 141 (1973).CrossRefGoogle Scholar
Kavarnos, G.J. and Turro, N.J., Chem. Rev. 86, 401 (1986).CrossRefGoogle Scholar
Nakano, S., Nosawa, M., and Yanagawa, M., Anal. Chim. Acta 261, 183 (1992).CrossRefGoogle Scholar
Myler, S., Eaton, S., and Higson, S.P.J., Anal. Chim. Acta 357, 55 (1997).CrossRefGoogle Scholar
Gitcher, T., Stavreva, D.A., Cerovská, N., Wagner, E.D., and Plewa, M.J., Mutat. Res. 331, 127 (1995).Google Scholar
Plewa, M.J., Wagner, E.D., Yu, T., and Anderson, D., Environ. Mol. Mutagen. 26, 175 (1995).CrossRefGoogle Scholar
Michaelis, L., Schubert, M.P., and Granick, S., J. Am. Chem. Soc. 61, 1981 (1939).CrossRefGoogle Scholar
LuValle, J.E., Glass, D.B., and Weissberger, A., J. Am. Chem. Soc. 70, 2223 (1948).CrossRefGoogle Scholar
Michaelis, L. and Granick, S., J. Am. Chem. Soc. 65, 1747 (1943).CrossRefGoogle Scholar
Shao, K., Ma, Y., Cao, Y., Chen, Z., Ji, X., and Yao, J., Chem. Mater. 13, 250 (2001).Google Scholar
Fujita, T., Iyi, N., Kosugi, T., Ando, A., Deguchi, T., and Sota, T., Clays Clay Miner. 45, 77 (1997).CrossRefGoogle Scholar
Farmer, V.C. and Russell, J.D., Spectrochim. Acta 20, 1149 (1964).CrossRefGoogle Scholar
Lagaly, G., Gonzalez, M. Fernandez, and Weiss, A., Clay Miner. 11, 173 (1976).CrossRefGoogle Scholar