Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-hfbn9 Total loading time: 0.34 Render date: 2021-06-16T03:08:29.114Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Precursor and processing effects on BaPbO3 formation kinetics

Published online by Cambridge University Press:  01 March 2006

Jun-ichi Tani
Affiliation:
Department of Inorganic Chemistry, Osaka Municipal Technical Research Institute, Joto-ku, Osaka 536-8553, Japan
Guerman Popov
Affiliation:
Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
Paul R. Mort
Affiliation:
Procter & Gamble Co., Cincinnati, Ohio 45217
Richard E. Riman
Affiliation:
Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
Corresponding
E-mail address:
Get access

Abstract

The synthesis of BaPbO3 from a wide range of mixtures containing metalorganic precursors, nitrate precursors, lead oxides, barium oxide and peroxide was investigated, and the kinetics was analyzed using the Johnson–Mehl–Avrami (JMA) equation. It was found that Ba and Pb stearate soaps and Pb oxalate that were used as metalorganic precursors formed BaCO3 and PbO or Pb3O4 after firing at 440 °C. The formation rate of BaPbO3 from a metalorganic precursor system is not higher than that from the conventional BaCO3–PbO system and does not depend on mixing methods or the kinds of metalorganic precursors but instead on the synthesis atmosphere. In the case of the BaCO3–PbO system, the Avrami exponent (n) is ∼1, indicating that the reaction is controlled by the phase-boundary-contraction interface reaction. For the BaO2–PbO2 system, n has two values ∼1 and ∼0.3, depending on the reaction temperature and time, indicating that the reaction is either controlled by the phase-boundary-contraction interface reaction or diffusion-controlled reaction. In the Ba nitrate–Pb nitrate system, phase-pure BaPbO3 is obtained at 550 °C, which is 250 °C lower than in the case of the BaCO3–PbO system. The value of n for the nitrate system is ∼1.5, indicating that the reaction is controlled by a three-dimensional (3D) diffusion-controlled nucleation mechanism. In the BaO–PbO system, the formation of BaPbO3 started at 350 °C by an exothermic reaction and the content of BaPbO3 in the product was ∼40 wt%, which is independent of reaction temperature as well as time in the temperature range of 350–500 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Yasukawa, M., Murayama, N.: A promising oxide material for high-temperature thermoelectric energy conversion: Ba1− x Srx PbO3 solid solution system. Mater. Sci. Eng. B 54, 64 (1998).CrossRefGoogle Scholar
2.Sleight, A.W., Gillson, J.L., Bierstedt, P.E.: High-temperature superconductivity in the BaPb1−xBixO3 systems. Solid State Commun. 17, 27 (1975).CrossRefGoogle Scholar
3.Cava, R.J., Batlogg, B., Espinosa, G.P., Ramirez, A.P., Krajewski, J.J.Peck, W.F. Jr.Rupp, L.W. Jr.Cooper, A.S.: Superconductivity at 3.5 K in BaPb0.75Sb0.25O3: Why is Tc so low? Nature 339, 291 (1989).CrossRefGoogle Scholar
4.Nitta, T., Nagase, K., Hayakawa, S., Iida, Y.: Formation and properties of barium metaplumbate. J. Am. Ceram. Soc. 48, 642 (1965).CrossRefGoogle Scholar
5.Vidyasagar, K., Gopalakrishnan, J., Rao, C.N.R.: Synthesis of complex metal oxides using hydroxide, cyanide, and nitrate solid solution precursors. J. Solid State Chem. 58, 29 (1985).CrossRefGoogle Scholar
6.Yamanaka, A., Maruyama, T., Atake, T., Saito, Y.: Preparation of BaPbO3 from coprecipitated barium-lead oxalate. Thermochemica Acta 115, 207 (1987).CrossRefGoogle Scholar
7.Chang, M.C., Wu, J.M., Cheng, S.Y., Chen, S.Y.: Reaction kinetics and mechanism of BaPbO3 formation. Mater. Chem. Phys. 65, 57 (2000).CrossRefGoogle Scholar
8.Mort, P.R., Riman, R.E.: Determination of homogeneity scale in ordered and partially ordered mixtures. Powder Technol. 82, 93 (1995).CrossRefGoogle Scholar
9.Mort, P.R., Riman, R.E.: Reactive multicomponent powder mixtures prepared by microencapsulation: Pb(Mg1/3Nb2/3)O3 synthesis. J. Am. Ceram. Soc. 75, 1581 (1992).CrossRefGoogle Scholar
10.Chung, F.H.: Quantitative interpretation of x-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. J. Appl. Crystallogr. 7, 519 (1974).CrossRefGoogle Scholar
11.Lide, D.R.: Handbook of Chemistry and Physics, 83th ed. (CCR Press, New York, 2002), pp. 444, 4–65.Google Scholar
12.Ikushima, H., Hayakawa, S.: Electrical properties of BaPbO3 ceramics. Solid State Electron 9, 921 (1966).CrossRefGoogle Scholar
13.Walker, P.L. Jr.Rusinko, F. Jr.Austin, L.G. Gas reactions of carbon, in Advances in Catalysis and Related Subjects, XI, edited by Eley, D.D., Selwood, P.W., and Weizs, P.B. (Academic Press Inc., New York, 1959), pp. 133221.Google Scholar
14.Wilson, O.C. Jr.Riman, R.E.: Morphology control of lead carboxylate powders via anionic substitutional effects. J. Colloid Interface Sci. 167, 358 (1994).CrossRefGoogle Scholar
15.Shaikh, A.S., Vest, G.M.: Kinetics of BaTiO3 and PbTiO3 formation from metalorganic precursors. J. Am. Ceram. Soc. 69, 682 (1986).CrossRefGoogle Scholar
16.Wang, X., Zhao, C., Wang, Z., Wu, F., Zhao, M.: Synthesis of BaTiO3 nanocrystals by stearic acid gel method. J. Alloy Compd. 204, 33 (1994).CrossRefGoogle Scholar
17.Barin, I.: Thermochemical Data of Pure Substances. (Weinheim, Germany, New York, 1989).Google Scholar
18.Hancock, J.D., Sharp, J.H.: Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, bruref, and BaCO3. J. Am. Ceram. Soc. 55, 74 (1972).CrossRefGoogle Scholar
19.Avrami, M.: Kinetics of phase change, I: General theory. J. Chem. Phys. 7, 121103 (1939).CrossRefGoogle Scholar
20.Avrami, M.: Kinetics of phase change, II: Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212 (1940).CrossRefGoogle Scholar
21.Avrami, M.: Kinetics of phase change, III: Granulation, phase change, and microstructure. J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
22.Sun, C-L., Wang, H-W., Chang, M-C., Lin, M-S., Chen, S-Y.: Characterization of BaPbO3 and Ba(Pb1−xBix)O3 thin films. Mater. Chem. Phys. 78, 507 (2002).CrossRefGoogle Scholar
23.Hulbert, S.F.: Models for solid-state reactions in powdered compacts: A review. Br. Ceram. Soc. J. 6, 11 (1967).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Precursor and processing effects on BaPbO3 formation kinetics
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Precursor and processing effects on BaPbO3 formation kinetics
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Precursor and processing effects on BaPbO3 formation kinetics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *