Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-06T11:37:00.636Z Has data issue: false hasContentIssue false

Plastic deformation in impure nanocrystalline ceramics

Published online by Cambridge University Press:  31 January 2011

Rachman Chaim
Affiliation:
Department of Materials Engineering, Technion–Israel Institute of Technology, Haifa 32000 Israel
Get access

Abstract

Plastic deformation behavior of impure nanocrystalline ceramics (NCC) was modeled using the percolative composite model in conjunction with models for plastic deformation by grain boundary sliding. The “glass transition temperature” concept was used to determine the threshold strain rate criterion below which the impure nanocrystalline ceramic would deform plastically. Threshold strain rate is stress independent. It increases with the temperature increase and with the grain size decrease. Using the dissolution-precipitation model, dependence of the strain rate on temperature, stress, and grain size in the nanometer regime for impure NCCs was calculated. As an example, the critical conditions for plasticity in impure yttria-tetragonal zirconia polycrystals (Y-TZP) were evaluated. At 600 °C, strain rates as high as 10−4 s−1 were expected in 10 nm impure Y-TZP. Comparison of the published data extrapolated into the nanometer range to the calculated threshold level showed that increase in the applied stress is associated with increase in the grain size and strain rate onsets for plastic deformation.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
2.Birringer, R., Mater. Sci. Eng. A 117, 33 (1989).CrossRefGoogle Scholar
3.Siegel, R. W., Nanostruct. Mater. 4, 121 (1991).CrossRefGoogle Scholar
4.Suryanaryana, C., Int. Mater. Rev. 40, 41 (1995).CrossRefGoogle Scholar
5.Korn, D., Morsch, A., Birringer, R., Arnold, W., and Gleiter, H., J. Physique C5, 769 (1988).Google Scholar
6.Kobelev, N. P., Soifer, Ya. M., Andrievski, R. A., and Günther, B., Nanostruct. Mater. 2, 537 (1993).CrossRefGoogle Scholar
7.Gallas, M. R. and Piermarini, G. J., J. Am. Ceram. Soc. 77, 2917 (1994).CrossRefGoogle Scholar
8.Cottom, B.A. and Mayo, M. J., Scripta Mater. 34, 809 (1996).CrossRefGoogle Scholar
9.Mayo, M.J., Siegel, R.W., Narayanasamy, A., and Nix, W.D., J. Mater. Res. 5, 1073 (1990).CrossRefGoogle Scholar
10.Shen, T.D., Koch, C. C., Tsui, T. Y., and Pharr, G. M., J. Mater. Res. 10, 2892 (1995).CrossRefGoogle Scholar
11.Fougere, G.E., Riester, L., Farber, M., Weertman, J., and Siegel, R. W., Mater. Sci. Eng. A 204, 1 (1995).CrossRefGoogle Scholar
12.Chokshi, A.H., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall. 23, 1679 (1989).CrossRefGoogle Scholar
13.Lu, K., Wei, W.D., and Wang, J. T., Scripta Metall. Mater. 24, 2319 (1990).CrossRefGoogle Scholar
14.Erb, U., El-Sherik, A. M., Palumbo, G., and Aust, K. T., Nanostruct. Mater. 2, 383 (1993).CrossRefGoogle Scholar
15.Lu, K., Zhang, H. Y., Zhong, Y., and Fecht, H. J., J. Mater. Res. 12, 923 (1997).CrossRefGoogle Scholar
16.Nieh, T. and Wadsworth, J., Scripta Metall. Mater. 25, 955 (1991).CrossRefGoogle Scholar
17.Scattergood, R.O. and Koch, C.C., Scripta Metall. Mater. 27, 1195 (1992).CrossRefGoogle Scholar
18.Lian, J., Baudelet, B., and Nazarov, A.A., Mater. Sci. Eng. A 172, 23 (1993).CrossRefGoogle Scholar
19.Gryaznov, V.G., Gutkin, M. Yu., Romanov, A. E., and Trusov, L. I., J. Mater. Sci. 28, 4359 (1993).CrossRefGoogle Scholar
20.Bush, M. B., Mater. Sci. Eng. A 161, 127 (1993).CrossRefGoogle Scholar
21.Pande, C. S., Masumura, R. A., and Armstrong, R. W., Nanostruct. Mater. 2, 323 (1993).CrossRefGoogle Scholar
22.Hahn, H. and Padmanabhan, K. A., Philos. Mag. B 76, 559 (1997).CrossRefGoogle Scholar
23.Christman, T., Scripta Metall. Mater. 28, 1495 (1993).CrossRefGoogle Scholar
24.Savader, J. B., Scanlon, M. R., Cammarata, R. C., Smith, D. T., and Hayzelden, C., Scripta Mater. 36, 29 (1997).CrossRefGoogle Scholar
25.Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).CrossRefGoogle Scholar
26.Cui, Z. and Hahn, H., Nanostruct. Mater. 1, 419 (1992).CrossRefGoogle Scholar
27.Chen, L., Rouxcel, T., Chaim, R., Vesteghem, H., and Sherman, D., Mater. Sci. Forum 243–245, 245 (1997).Google Scholar
28.Padmanabhan, K. A. and Schlipf, J., Mater. Sci. Technol. 12, 391 (1996).CrossRefGoogle Scholar
29.Chaim, R., J. Mater. Res. 12, 1828 (1997).CrossRefGoogle Scholar
30.DiMelfi, R. J., Mater. Sci. Eng. A 237, 141 (1997).CrossRefGoogle Scholar
31.DiMelfi, R. J., Mater. Sci. Eng. A 158, 53 (1992).CrossRefGoogle Scholar
32.Keblinski, P., Phillpot, S. R., Wolf, D., and Gleiter, H., Acta Mater. 45, 987 (1997).CrossRefGoogle Scholar
33.Keblinski, P., Wolf, D., Phillpot, S. R., and Gleiter, H., Philos. Mag. Lett. 76, 143 (1997).CrossRefGoogle Scholar
34.Gupta, P. K., J. Non-Cryst. Solids 195, 158 (1996).CrossRefGoogle Scholar
35.Wang, J., Wolf, D., Phillpot, S. R., and Gleiter, H., Philos. Mag. A 73, 517 (1996).CrossRefGoogle Scholar
36.Lu, K. and Sun, N. X., Philos. Mag. Lett. 75, 389 (1997).CrossRefGoogle Scholar
37.Lu, K., Lück, R., and Predel, B., Scripta Metall. Mater. 28, 1387 (1993).CrossRefGoogle Scholar
38.Terwilliger, C.D. and Chiang, Y-M., in Nanophase and Nanocomposite Materials, edited by Komarneni, S., Parker, J.C., and Thomas, G. J. (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993), p. 15.Google Scholar
39.Raj, R. and Chyung, C. K., Acta Metall. 29, 159 (1981).CrossRefGoogle Scholar
40.Pharr, G.M. and Ashby, M. F., Acta Metall. 31, 129 (1983).CrossRefGoogle Scholar
41.Wakai, F., Acta Metall. Mater. 42, 1163 (1994).CrossRefGoogle Scholar
42.Stocker, R.L. and Ashby, M. F., Rev. Geophys. Space Phys. 11, 391 (1973).CrossRefGoogle Scholar
43.Durney, D.W., Nature 235, 315 (1972).CrossRefGoogle Scholar
44.Rutter, E.H., Philos. Trans. R. Soc. London A 283, 203 (1976).Google Scholar
45.Durney, D.W., Philos. Trans. R. Soc. London A 283, 229 (1976).Google Scholar
46.Palumbo, G., Thorpe, S. J., and Aust, K. T., Scripta Metall. Mater. 24, 1347 (1990).CrossRefGoogle Scholar
47.Wang, N., Palumbo, G., Wang, Z., Erb, U., and Aust, K.T., Scripta Metall. Mater. 28, 253 (1993).CrossRefGoogle Scholar
48.Mott, N.F., Proc. Phys. Soc. 60, 391 (1948).CrossRefGoogle Scholar
49.Kifkins, R.C., Mater. Sci. Eng. 2, 181 (1967).CrossRefGoogle Scholar
50.Hilliard, J. E., in Stereology, edited by Elias, H. (Springer-Verlag, Berlin, 1967), p. 211.CrossRefGoogle Scholar
51.Weissmüller, J., J. Mater. Res. 9, 4 (1994).CrossRefGoogle Scholar
52.Sutton, A.P. and Balluffi, R. W., Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995), p. 747.Google Scholar
53.Scherer, G.W. and Uhlmann, D. R., J. Cryst. Growth 29, 12 (1975).Google Scholar
54.Paul, A., Chemistry of Glasses (Chapman and Hall, New York, 1990), p. 115.Google Scholar
55.Chokshi, A.H., Scripta Mater. 34, 1905 (1996).CrossRefGoogle Scholar
56.Horvath, J., Defect Diffusion Forum 66–69, 207 (1989).Google Scholar
57.Balandin, I. L., Bokstein, B. S., Egorov, V. K., Kurkin, P.V., and Trusov, L.I., Mater. Lett. 32, 13 (1997).CrossRefGoogle Scholar
58.Bernardini, J., Interface Sci. 5, 55 (1997).CrossRefGoogle Scholar
59.Wurschum, R., Reimann, K., Gruss, S., Kubler, A., Scharweachter, P., Frank, W., Kruse, O., Casstanjen, H.D., and Schaefer, H-E., Philos. Mag. B 76, 407 (1997).CrossRefGoogle Scholar
60.Hill, R., Proc. Phys. Soc. London Set. A 65, 439 (1952).Google Scholar
61.Shand, E.B., Engineering Glass, Modern Materials (Academic Press, New York, 1968), Vol. 6, p. 262.Google Scholar
62.Beeré, W., Philos. Trans. R. Soc. London A 288, 177 (1978).Google Scholar
63.Pilling, J. and Ridley, N., Superplasticity in Crystalline Solids (The Institute of Metals, U.K., 1989), Chaps. 3 and 4.Google Scholar
64.Buckley, J. D. and Braski, D. N., J. Am. Ceram. Soc. 50, 220 (1967).CrossRefGoogle Scholar
65.Paul, A., Chemistry of Glasses (Chapman and Hall, New York, 1990), p. 118.Google Scholar
66.Theunissen, G. S. A. M., Winnubst, A. J.A, and Burggraaf, A. J., J. Mater. Sci. 27, 5057 (1992).CrossRefGoogle Scholar
67.Primdahl, S., Thölen, A., and Langdon, T. G., Acta Metall. Mater. 43, 1211 (1995).CrossRefGoogle Scholar
68.Ma, Y. and Langdon, T. G., Acta Metall. Mater. 42, 2753 (1994).CrossRefGoogle Scholar
69.Wakai, F. and Nagano, T., J. Mater. Sci. 26, 241 (1991).CrossRefGoogle Scholar
70.Kajihara, K., Yoshizawa, Y., and Sakuma, T., Acta Metall. Mater. 43, 1235 (1995).CrossRefGoogle Scholar
71.Sherwood, D.J. and Hamilton, C. H., Scripta Metall. Mater. 25, 2873 (1991).CrossRefGoogle Scholar
72.Chokshi, A. H., Mater. Sci. Technol. 7, 469 (1991).CrossRefGoogle Scholar
73.Kondo, T., Takigawa, Y., and Sakuma, T., Mater. Sci. Eng. A 231, 163 (1997).CrossRefGoogle Scholar
74.Owen, D. M. and Chokshi, A. H., Acta Mater. 46, 667 (1998).CrossRefGoogle Scholar
75.Chokshi, A. H., Mater. Sci. Eng. A 166, 119 (1993).CrossRefGoogle Scholar
76.Bravo-Leon, A., Jimenez-Melendo, M., Domínguez-Rodríguez, A., and Chokshi, A. H., Scripta Mater. 34, 1155 (1996).CrossRefGoogle Scholar
77.Raj, R., Mater. Sci. Eng. A 166, 89 (1993).CrossRefGoogle Scholar
78.Langdon, T.G., Mater. Sci. Eng. A 137, 1 (1991).CrossRefGoogle Scholar
79.Wang, N., Wang, Z., Aust, K.T., and Erb, U., Mater. Sci. Eng. A 237, 150 (1997).CrossRefGoogle Scholar
80.Luthy, H., White, R. A., and Sherby, O. D., Mater. Sci. Eng. 39, 211 (1979).CrossRefGoogle Scholar