Hostname: page-component-68945f75b7-gkscv Total loading time: 0 Render date: 2024-08-05T19:21:47.984Z Has data issue: false hasContentIssue false

Photoluminescence of Eu3+ activated Ba2SnO4 under ultraviolet–vacuum ultraviolet excitation

Published online by Cambridge University Press:  01 July 2006

Hui Gao
Affiliation:
Department of Materials Science, Lanzhou University, Lanzhou 730000, People's Republic of China
Yuhua Wang*
Affiliation:
Department of Materials Science, Lanzhou University, Lanzhou 730000, People's Republic of China
*
a) Address all correspondence to this author. e-mail: wyh@lzu.edu.cn
Get access

Abstract

A novel red emitting phosphor, Eu3+-doped Ba2SnO4, has been synthesized by solid-state reaction. Photoluminescence (PL) excitation spectrum of Ba2Sn0.925Eu0.075O4 shows the strongest broad band from 220 to 280 nm due to the charge transfer (CT) band of Eu3+–O2, and the band centered at 180 nm could be caused by the CT band of Ba2+–O2. The band (110–130 nm) could be attributed to SnO68 octahedron band absorption. It is found that under 254 nm excitation, Ba2Sn1−xEuxO4 (0.025 ≤ x ≤ 0.125) exhibits a strong emission at around 592 nm, and with the increase in Eu3+, the phosphors present orange to red luminescence due to the decreasing of the site symmetry of Eu3+. The maximum PL intensity has been obtained for 7.5 mol% concentration of Eu3+ in Ba2SnO4. On the other hand, under 147 nm excitation, the phosphors do not emit effectively because of inefficient absorption in vacuum ultraviolet (VUV) region.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Meyssamy, H., Riwotzki, K., Kornowski, A., Naused, S., Haase, M.: Wet-chemical synthesis of doped colloidal nanomaterials: Particles and fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4:Ce, Tb. Adv. Mater. 11, 840 (1999).3.0.CO;2-2>CrossRefGoogle Scholar
2.Haasw, M., Riwotzki, K., Meyssamy, H., Wski, A. Kornm: Synthesis and properties of colloidal lanthanide-doped nanocrystals. J. Alloys Compd. 303, 191 (2000).CrossRefGoogle Scholar
3.Zhou, Y.H., Lin, J., Wang, S.B., Zhang, H.J.: Preparation of Y3Al5O12:Eu phosphors by citric–gel method and their luminescent properties. Opt. Mater. 20, 13 (2002).CrossRefGoogle Scholar
4.Wei, Z., Sun, L., Liao, C., Yan, C., Huang, S.: Fluorescence intensity and color purity improvement in nanosized YBO3:Eu. Appl. Phys. Lett. 80, 1447 (2002).CrossRefGoogle Scholar
5.Lee, C.H., Jung, K.Y., Choi, J.G., Kang, Y.C.: Nano-sized Y2O3:Eu phosphor particles prepared by spray pyrolysis. Mater. Sci. Eng. B 116, 59 (2005).CrossRefGoogle Scholar
6.Li, Y.H., Hong, G.Y.: Synthesis and luminescence properties of nanocrystalline YVO4:Eu3+. J. Solid State Chem. 178, 645 (2005).Google Scholar
7.Lee, K.G., Yu, B.Y., Pyun, C.H., Mho, S.I.: Vacuum ultraviolet excitation and photoluminescence characteristics of (Y,Gd)Al3(BO3)4/Eu3+. Solid State Commun. 122, 485 (2002).CrossRefGoogle Scholar
8.Wang, R.Y.: Distribution of Eu3+ ions in LaPO4 nanocrystals. J. Lumin. 106, 211 (2004).CrossRefGoogle Scholar
9.Sun, L.D., Yao, J., Liu, C.H., Liao, C.S., Yan, C.H.: Rare earth activated nanosized oxide phosphors: Synthesis and optical properties. J. Lumin. 87–89, 447 (2000).CrossRefGoogle Scholar
10.Kim, K.N., Jung, H.K., Park, H.D., Kim, D.: High luminance of new green emitting phosphor, Mg2SnO4:Mn. J. Lumin. 99, 169 (2002).CrossRefGoogle Scholar
11.Yang, H.M., Shi, J.X., Gong, M.L.: A novel red emitting phosphor Ca2SnO4: Eu3+. J. Solid State Chem. 178, 917 (2005).CrossRefGoogle Scholar
12.Chen, Y.C., Chang, Y.H., Tsai, B.S.: Synthesis and the luminescent properties of europium-activated Ca2SnO4 phosphors. Opt. Mater. 27, 1874 (2005).CrossRefGoogle Scholar
13.Chau, P.T.M., Ryu, K.H., Yo, C.H.: Influence of the technological conditions on the luminescence of Eu3+ ions in Sr2SnO4. J. Mater. Sci. 33, 1299 (1998).CrossRefGoogle Scholar
14.Jie, Y. and Mineraligisch-Petrogr, . Institute der Universitaet. Heidelberg, Germany. ICDD Grant-in-Aid (1991).Google Scholar
15.Hinarsu, Y.: Electron paramagnetic resonance spectra of Pr4+ ions doped in Sr2SnO4and Ba2SnO4. J. Solid State Chem. 130, 250 (1997).CrossRefGoogle Scholar
16.Hinarsu, Y., Tezuka, K.: Electron paramagnetic resonance study of Pr4+ ions doped in BaSnO3, Ba2SnO4, and Ba3Sn2O7. J. Solid State Chem. 138, 329 (1998).CrossRefGoogle Scholar
17.Tian, L.H., Yu, B.Y., Pyun, C.H., Park, H.L., Mho, S.: New red phosphors BaZr(BO3)2 and SrAl2B2O7 doped with Eu3+ for PDP applications. Solid State Commun. 129, 43 (2004).CrossRefGoogle Scholar
18.Kim, G.C., Park, H.L., Kim, T.W.: Emission color tuning from blue to green through cross-relaxation in heavily Tb3+-doped YAlO3. Mater. Res. Bull. 36, 1603 (2001).CrossRefGoogle Scholar
19.Fu, X.Y., Zhang, H.W., Niu, S.Y., Xin, Q.: Synthesis and luminescent properties of SnO2:Eu nanopowder via polyacrylamide gel method. J. Solid State Chem. 178, 603 (2005).CrossRefGoogle Scholar
20.Terra, J., Guenzburger, D.: Electronic structure and electric-field gradients of crystalline Sn(II) and Sn(IV) compounds. Phys. Rev. B 44, 8584 (1991).CrossRefGoogle ScholarPubMed
21.Howe, B., Diaz, A.L.: Characterization of host-lattice emission and energy transfer in BaMgAl10O17:Eu2+. J. Lumin. 109, 51 (2004).CrossRefGoogle Scholar
22.Wang, Y.H., Zhang, Z.H.: Luminescence thermal degradation mechanism in BaMgAl10O17:Eu2+ phosphor. Electrochem. Solid-State Lett. 8(11), H97 (2005).CrossRefGoogle Scholar
23.Dawson, B., Ferfuson, M., Marking, G., Diaz, A.L.: Mechanisms of VUV damage in BaMgAl10O17:Eu2+. Chem. Mater. 16, 5311 (2004).CrossRefGoogle Scholar