Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-18T06:58:02.616Z Has data issue: false hasContentIssue false

Observations on the electrical characterization of the heteroepitaxially grown cubic SiC

Published online by Cambridge University Press:  31 January 2011

B. Molnar
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5000
Get access

Abstract

This paper deals with the electrical characterization of thin layers of cubic SiC, grown on (100) Si substrates. The resistivity and Hall coefficient for undoped SiC layers were measured between 10 K and 500 K. The influence of inhomogeneities on the electrical properties of the as-grown films has been established. The Hall data show a clear sign of a transition to impurity band conduction. The donor concentrations studied are in the “intermediate” range. The donor activation energy has been shown to decrease with increasing nitrogen concentration. The nitrogen concentration was measured by SIMS. The variation in nitrogen concentration is also seen in changes in the shape of the ESR spectrum. The presence of nitrogen in the intermediate concentration range is the most likely reason for the conflicting values reported for the donor ionization energy as measured by Hall and PL measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nishino, S., Powell, J. A., and Will, H. A., Appl. Phys. Lett. 42, 460 (1983).CrossRefGoogle Scholar
2. Liaw, P. and Davis, R. F., J. Electrochem. Soc. 132, 642 (1985).Google Scholar
3. Yoshida, S., Sasaki, K., Sakuma, E., Misawa, S., and Gonda, S., Appl. Phys. Lett. 46, 766 (1985).CrossRefGoogle Scholar
4. Furukawa, K., Uemento, A., Shigota, M., Suzuki, A., and Makajima, S., Appl. Phys. Lett. 48, 1536 (1986).Google Scholar
5. Kelner, G., Binari, S., Sieger, K., and Kong, H., IEEE Electron Device Lett. ED-8, 428 (1987).CrossRefGoogle Scholar
6. Carter, C. H., Jr. Edmond, J. A., Palmour, J. W., Ryu, J., Kim, H. J., and Davis, R. F., in Microscopic Identification of Electronic Defects in Semiconductors, edited by Johnson, N. M., Bishop, S. G., and Watkins, G. D. (Mater. Res. Soc. Symp. Proc. 46, Pittsburgh, PA, 1985), p. 593.Google Scholar
7. Pirouz, P., Chorey, C. M., Cheng, T. T., and Powell, J. A., in Heteroepitaxy on Silicon II, edited by Fan, J. C. C., Phillips, J. M., and Tsaur, B-Y. (Mater. Res. Soc. Symp. Proc. 91, Pittsburgh, PA, 1987), p. 399.Google Scholar
8. Aivazova, L. S., Gorin, S. N., Sidyakin, V. G., and Shvarts, I. M., Sov. Phys. Semicond. 11, 1069 (1977).Google Scholar
9. Rosengreen, A., Mater. Res. Bull. IV, 355 (1969).Google Scholar
10.Carlos, W. E., Moore, W. J., Siebenmann, P. G., Freitas, J. A., Jr. Kaplan, R., Bishop, S. G., Nordquist, P. E. R., Jr. Kong, M., and Davis, R. F., in Novel Refractory Semiconductors, edited by Emin, D., Aselage, T. L., and Wood, C. (Mater. Res. Soc. Symp. Proc. 97, Pittsburgh, PA, 1987), p. 253.Google Scholar
11. Altaiskii, Yu. M., Zaritskii, I. M., Zevin, V. Ya., and Knochits, A. A., Sov. Phys.-Solid State 12, 2453 (1971).Google Scholar
12. Feher, G., Phys. Rev. 114, 1219 (1959).CrossRefGoogle Scholar
13. Lely, J. A. and Kroger, F. A., Halbleiter und Phosphore, Vortrage des internationalen Kolloquims 1956 in Garraisch-Partenkirchen (Vieweg, Braunschweig, 1958), p. 525.Google Scholar
14. Wieringen, J. S. van, Halbleiter und Phosphore, Vortrage des internationalen Kolloquims 1956 in Garmisch-Partenkirchen (Vieweg, Braunschweig, 1958), p. 367.CrossRefGoogle Scholar
15. Lomakina, G. A., Sov. Phys.-Solid State 7, 475 (1965).Google Scholar
16. Violina, G. N., Liang-Hsiu, Y., and Kholuyanov, G. F., Sov. Phys.-Solid State 5, 2500 (1964).Google Scholar
17. Gorin, S. N. and Pletyushkin, A. A., Izv. Akad. Nauk SSSR Ser.Fiz. 28, 1310 (1964).Google Scholar
18. Nelson, W. E., Halden, F. A., and Rosengreen, A., J. Appl. Phys. 37, 333 (1966).Google Scholar
19. Munch, W. von, in Landolt-Bornstain Numerical data and functional relationships in science and technology, edited by Madelung, O. (Springer-Verlag, Berlin, Germany, 1982), Vol. 17 A.Google Scholar
20. Suzuki, A., Uemoto, A., Shigeta, M., Furukawa, K., and Nakajima, S., Appl. Phys. Lett. 49, 450 (1986).CrossRefGoogle Scholar
21. Segall, B., Alterovitz, S. A., Haughland, E. J., and Matus, L. G., Appl. Phys. Lett. 50, 1533 (1987).Google Scholar
22. Shinohara, M., Yamanaka, M., Daimon, H., Sakuma, E., Okumara, H., Misawa, S., Endo, K., and Yoshida, S., Jpn. J. Appl. Phys. 27, L434 (1988).Google Scholar
23. Suzuki, A., Ogura, A., Furukawa, K., Fujii, Y., Shigeta, K., and Nakajima, S., J. Appl. Phys. 64, 2818 (1988).Google Scholar
24. Segall, B., Alterovitz, S. A., Haughland, E. J., and Matus, L. G., Appl. Phys. Lett. 49, 548 (1986).Google Scholar
25. Tachibana, T., Kong, H. S., Wang, Y. C., and Davis, R. F., J. Appl. Phys. 67, 6375 (1990).Google Scholar
26. Choyke, W. J., Hamilton, D. R., and Patrick, Lyle, Phys. Rev. 133, A1163 (1964).CrossRefGoogle Scholar
27. Dean, P. J., Choyke, W. J., and Patrick, Lyle, J. Lumin. 15, 299 (1977).Google Scholar
28. Choyke, W. J. and Patrick, Lyle, Phys. Rev. B 2, 4959 (1970).Google Scholar
29. Long, N. N., Nedzvetskii, D. S., Prokofava, N. K., and Reifman, M. B., Opt. Spectrosc. 29, 388 (1970).Google Scholar
30. Choyke, W. J., Feng, Z. C., and Powell, J. A., J. Appl. Phys. 64, 3163 (1988).Google Scholar
31. Freitas, J. A., Jr., Bishop, S. G., Edmond, J. A., Ryu, J., and Davis, R. F., J. Appl. Phys. 61, 2011 (1987).CrossRefGoogle Scholar
32. Palmour, J. W., Davis, R. F., and Astell-Burt, P., Sci. Technol. Microfab. 77, 185 (1987).Google Scholar
33. Pirouz, P., Chorey, C. M., and Powell, J. A., Appl. Phys. Lett. 50, 221 (1987).Google Scholar
34. Cheng, T. T., Pirouz, P., and Powell, J. A., in Chemistry and Defects in Semiconductor Heterostructures, edited by Kawabe, M., Sands, T. D., Weber, E. R., and Williams, R. S. (Mater. Res. Soc. Symp.Proc. 148, Pittsburgh, PA, 1989), p. 229.Google Scholar
35. Daal, H. J. van, Philips Res. Rep. Suppl. 3, 48, 1 (1965).Google Scholar
36. Fritzsche, H., Phys. Rev. 99, 406 (1955).CrossRefGoogle Scholar
37. Kaplan, R., Wagner, R. J., Kim, H. J., and Davis, R. E., Solid State Commun. 55, 67 (1985).Google Scholar
38. Davis, E. A. and Dale, W.Compton, Phys. Rev. 140 A, 2183 (1965).Google Scholar
39. Stillman, G. E. and Wolfe, C M., Thin Solid Films 31, 69 (1976).Google Scholar
40. Casey, H. C., Jr. Ermanis, F., and Wolfstirn, K. B., J. Appl. Phys. 40, 2945 (1969).CrossRefGoogle Scholar
41. Lee, T. L. and McGill, T. C, J. Appl. Phys. 46, 373 (1975).Google Scholar
42. Schechter, D., J. Appl. Phys. 61, 591 (1986).CrossRefGoogle Scholar
43. Fritzsche, H., Phys. Rev. 125, 1552 (1961).Google Scholar
44. Nishimura, H., Phys. Rev. 138 A, 815 (1965).Google Scholar
45. Veinger, A. I., Sov. Phys.-Semicond. 1, 14 (1967).Google Scholar
46. Okumura, H., Shinohara, M., Kuroda, S., Endo, K., Sakuma, E., Misawa, S., and Yoshida, S., Jpn. J. Appl. Phys. 27, 1712 (1988).Google Scholar