Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-f4n6r Total loading time: 0.268 Render date: 2021-05-13T10:31:52.816Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

N-doped graphene quantum dots-functionalized titanium dioxide nanofibers and their highly efficient photocurrent response

Published online by Cambridge University Press:  25 July 2014

Xiaotian Wang
Affiliation:
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
Dandan Ling
Affiliation:
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
Yueming Wang
Affiliation:
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
Huan Long
Affiliation:
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
Yibai Sun
Affiliation:
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
Yanqiong Shi
Affiliation:
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
Yuchao Chen
Affiliation:
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
Yao Jing
Affiliation:
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
Yueming Sun
Affiliation:
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
Yunqian Dai
Affiliation:
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
Corresponding
E-mail address:
Get access

Abstract

Titanium dioxide (TiO2), a widely used inorganic semiconductor owing to its superb photoelectric properties, has frequently been fabricated into composites to reduce its relatively large band gap and overcome its limited visible light absorption. In this article, a “layer-by-layer” method has been developed to prepare the composite structure of nitrogen (N)-doped graphene quantum dots (GQDs)-sensitized TiO2 nanofibers. The as-prepared structure shows considerable luminescence and exhibits excellent photoelectric properties. Various factors including the crystalline phase of TiO2, amount of N in GQDs, and irradiation wavelength were investigated to find the optimal conditions for enhanced photoelectric activity. It is demonstrated that the combination of highest N amount GQDs with TiO2 nanofibers of mixed phases (750 °C-sintered TiO2 nanofibers) possess the best photoelectric properties. The enhancement of properties using TiO2 nanofibers with mixed phases mainly contributes to the transfer of electrons between conduction bands of different phases in TiO2 and the distinctive photoluminescence (PL) property of N-GQDs. Furthermore, this enhancement can be achieved in most areas of the visible light range. The general mechanism of the electron generation and transfer of the structure is based on the normal PL and upconversion PL property of N-GQDs which serve as the sensitizer. We consider it a feasible method to improve the photoelectric conversion efficiency in photovoltaic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

Girit, Ç.Ö., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C-H., Crommie, M., Cohen, M.L., and Louie, S.G.: Graphene at the edge: Stability and dynamics. Science 323, 17051708 (2009).CrossRefGoogle ScholarPubMed
Yan, X., Cui, X., Li, B., and Li, L.S.: Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 10, 18691873 (2010).CrossRefGoogle ScholarPubMed
Zhuo, S., Shao, M., and Lee, S-T.: Upconversion and downconversion fluorescent graphene quantum dots: Ultrasonic preparation and photocatalysis. ACS Nano 6, 10591064 (2012).CrossRefGoogle ScholarPubMed
Shen, J., Zhu, Y., Yang, X., and Li, C.: Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 36863699 (2012).CrossRefGoogle ScholarPubMed
Ponomarenko, L., Schedin, F., Katsnelson, M., Yang, R., Hill, E., Novoselov, K., and Geim, A.: Chaotic Dirac billiard in graphene quantum dots. Science 320, 356358 (2008).CrossRefGoogle ScholarPubMed
Baker, S.N. and Baker, G.A.: Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 49, 67266744 (2010).CrossRefGoogle ScholarPubMed
Yang, S-T., Cao, L., Luo, P.G., Lu, F., Wang, X., Wang, H., Meziani, M.J., Liu, Y., Qi, G., and Sun, Y-P.: Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131, 1130811309 (2009).CrossRefGoogle ScholarPubMed
Li, Y., Hu, Y., Zhao, Y., Shi, G., Deng, L., Hou, Y., and Qu, L.: An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23, 776780 (2011).CrossRefGoogle ScholarPubMed
Reddy, A.L.M., Srivastava, A., Gowda, S.R., Gullapalli, H., Dubey, M., and Ajayan, P.M.: Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4, 63376342 (2010).CrossRefGoogle ScholarPubMed
Jeong, H.M., Lee, J.W., Shin, W.H., Choi, Y.J., Shin, H.J., Kang, J.K., and Choi, J.W.: Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11, 24722477 (2011).CrossRefGoogle ScholarPubMed
Li, Y., Zhao, Y., Cheng, H., Hu, Y., Shi, G., Dai, L., and Qu, L.: Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134, 1518 (2012).CrossRefGoogle ScholarPubMed
Parambhath, V.B., Nagar, R., and Ramaprabhu, S.: Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28, 78267833 (2012).CrossRefGoogle ScholarPubMed
Li, M., Wu, W., Ren, W., Cheng, H-M., Tang, N., Zhong, W., and Du, Y.: Synthesis and upconversion luminescence of N-doped graphene quantum dots. Appl. Phys. Lett. 101, 103107 (2012).CrossRefGoogle Scholar
Liu, R., Wu, D., Feng, X., and Müllen, K.: Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 133, 1522115223 (2011).CrossRefGoogle ScholarPubMed
Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353389 (2003).CrossRefGoogle Scholar
Long, R., English, N.J., and Prezhdo, O.V.: Photoinduced charge separation across the graphene-TiO2 interface is faster than energy losses: A time-domain ab initio analysis. J. Am. Chem. Soc. 134, 1423814248 (2012).CrossRefGoogle ScholarPubMed
Du, A., Ng, Y.H., Bell, N.J., Zhu, Z., Amal, R., and Smith, S.C.: Hybrid graphene/titania nanocomposite: Interface charge transfer, hole doping, and sensitization for visible light response. J. Phys. Chem. Lett. 2, 894899 (2011).CrossRefGoogle ScholarPubMed
Chen, C., Cai, W., Long, M., Zhou, B., Wu, Y., Wu, D., and Feng, Y.: Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 4, 64256432 (2010).CrossRefGoogle Scholar
Dai, Y., Sun, Y., Yao, J., Ling, D., Wang, Y., Long, H., Wang, X., Lin, B., Zeng, T.H., and Sun, Y.: Graphene-wrapped TiO2 nanofibers with effective interfacial coupling as ultrafast electron transfer bridges in novel photoanodes. J. Mater. Chem. A 2, 10601067 (2014).CrossRefGoogle Scholar
Shockley, W. and Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510519 (1961).CrossRefGoogle Scholar
Williams, K.J., Nelson, C.A., Yan, X., Li, L-S., and Zhu, X.: Hot electron injection from graphene quantum dots to TiO2 . ACS Nano 7, 13881394 (2013).CrossRefGoogle Scholar
Dai, Y., Jing, Y., Zeng, J., Qi, Q., Wang, C., Goldfeld, D., Xu, C., Zheng, Y., and Sun, Y.: Nanocables composed of anatase nanofibers wrapped in UV-light reduced graphene oxide and their enhancement of photoinduced electron transfer in photoanodes. J. Mater. Chem. 21, 1817418179 (2011).CrossRefGoogle Scholar
Dai, Y., Long, H., Wang, X., Wang, Y., Gu, Q., Jiang, W., Wang, Y., Li, C., Zeng, T.H., and Sun, Y.: Versatile graphene quantum dots with tunable nitrogen doping. Part. Part. Syst. Charact. 31, 597604 (2013).CrossRefGoogle Scholar
Hummers, W.S. Jr. and Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
Zhang, W., Zhang, M., Yin, Z., and Chen, Q.: Photoluminescence in anatase titanium dioxide nanocrystals. Appl. Phys. B 70, 261265 (2000).CrossRefGoogle Scholar
Lide, Z. and Mo, C-M.: Luminescence in nanostructured materials. Nanostruct. Mater. 6, 831834 (1995).CrossRefGoogle Scholar
Shen, J., Yan, B., Shi, M., Ma, H., Li, N., and Ye, M.: One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J. Mater. Chem. 21, 34153421 (2011).CrossRefGoogle Scholar
Luo, D., Zhang, G., Liu, J., and Sun, X.: Evaluation criteria for reduced graphene oxide. J. Phys. Chem. C 115, 1132711335 (2011).CrossRefGoogle Scholar
Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud'Homme, R.K., Aksay, I.A., and Car, R.: Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 3641 (2008).CrossRefGoogle ScholarPubMed
Zhang, Y-H., Chan, C.K., Porter, J.F., and Guo, W.: Micro-Raman spectroscopic characterization of nanosized TiO2 powders prepared by vapor hydrolysis. J. Mater. Res. 13, 26022609 (1998).CrossRefGoogle Scholar
Yang, Q., Xie, C., Xu, Z., Gao, Z., and Du, Y.: Synthesis of highly active sulfate-promoted rutile titania nanoparticles with a response to visible light. J. Phys. Chem. B 109, 55545560 (2005).CrossRefGoogle ScholarPubMed
Jing, L., Li, S., Song, S., Xue, L., and Fu, H.: Investigation on the electron transfer between anatase and rutile in nano-sized TiO2 by means of surface photovoltage technique and its effects on the photocatalytic activity. Sol. Energy Mater. Sol. Cells 92, 10301036 (2008).CrossRefGoogle Scholar
Zhang, Y., Li, G., Jin, Y., Zhang, Y., Zhang, J., and Zhang, L.: Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem. Phys. Lett. 365, 300304 (2002).CrossRefGoogle Scholar
Francisco, M.S.P. and Mastelaro, V.R.: Inhibition of the anatase-rutile phase transformation with addition of CeO2 to CuO-TiO2 system: Raman spectroscopy, x-ray diffraction, and textural studies. Chem. Mater. 14, 25142518 (2002).CrossRefGoogle Scholar
Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Powell, M.J., Palgrave, R.G., and Parkin, I.P.: Band alignment of rutile and anatase TiO2 . Nat. Mater. 12, 798801 (2013).CrossRefGoogle Scholar
Morales-Torres, S., Pastrana-Martinez, L.M., Figueiredo, J.L., Faria, J.L., and Silva, A.M.: Design of graphene-based TiO2 photocatalysts – A review. Environ. Sci. Pollut. Res. Int. 19, 36763687 (2012).CrossRefGoogle ScholarPubMed
Zhang, Q., He, Y., Chen, X., Hu, D., Li, L., Yin, T., and Ji, L.: Structure and photocatalytic properties of TiO2-graphene oxide intercalated composite. Chin. Sci. Bull. 56, 331339 (2011).CrossRefGoogle Scholar
Li, Q., Zhang, S., Dai, L., and Li, L.S.: Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc. 134, 1893218935 (2012).CrossRefGoogle ScholarPubMed
Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., and Yu, G.: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 17521758 (2009).CrossRefGoogle ScholarPubMed
Li, Y., Zhou, Z., Shen, P., and Chen, Z.: Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano 3, 19521958 (2009).CrossRefGoogle ScholarPubMed
Shen, J., Zhu, Y., Chen, C., Yang, X., and Li, C.: Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun. 47, 25802582 (2011).CrossRefGoogle Scholar
Pan, D., Zhang, J., Li, Z., Wu, C., Yan, X., and Wu, M.: Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem. Commun. 46, 36813683 (2010).CrossRefGoogle Scholar
Hoffmann, R.: Trimethylene and the addition of methylene to ethylene. J. Am. Chem. Soc. 90, 14751485 (1968).CrossRefGoogle Scholar
Wang, X., Yu, W.W., Zhang, J., Aldana, J., Peng, X., and Xiao, M.: Photoluminescence upconversion in colloidal CdTe quantum dots. Phys. Rev. B 68, 125318 (2003).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

N-doped graphene quantum dots-functionalized titanium dioxide nanofibers and their highly efficient photocurrent response
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

N-doped graphene quantum dots-functionalized titanium dioxide nanofibers and their highly efficient photocurrent response
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

N-doped graphene quantum dots-functionalized titanium dioxide nanofibers and their highly efficient photocurrent response
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *