Hostname: page-component-5d59c44645-dknvm Total loading time: 0 Render date: 2024-02-28T22:45:13.230Z Has data issue: false hasContentIssue false

Molecular orbital calculations of chemical bonding states of solute elements in amorphous silicon nitride ceramics

Published online by Cambridge University Press:  31 January 2011

Katsuyuki Matsunaga
Affiliation:
Fine Ceramics Research Association, Synergy Ceramics Laboratory, 2–4-1 Mutsuno Atsuta-ku, Nagoya 456-8587, Japan
Yuji Iwamoto
Affiliation:
Fine Ceramics Research Association, Synergy Ceramics Laboratory, 2–4-1 Mutsuno Atsuta-ku, Nagoya 456-8587, Japan
Hideaki Matsubara
Affiliation:
Fine Ceramics Research Association, Synergy Ceramics Laboratory, 2–4-1 Mutsuno Atsuta-ku, Nagoya 456-8587, Japan
Get access

Abstract

We performed ab initio Hartree–Fock molecular orbital calculations of solute elements in amorphous silicon nitride (Si–N) ceramics. To investigate effects of solute elements, X, such as boron, carbon, aluminum, silicon, and phosphorus, on stabilization of the Si–N network, we used model clusters representing local atomic structures in the Si–N network, and the solute elements were substituted for nitrogen. Bonding characteristics around the solute elements were analyzed, and bond energies of Si–X were also calculated using model clusters. It was found that, among these solute elements in amorphous Si–N, the Si–C bond is able to make the Si–N network more stable due to its high covalency.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Riedel, R., Passing, G., Schönfelder, H., and Brook, R.J., Nature 355, 714 (1992).Google Scholar
2.Bill, J. and Aldinger, F., Adv. Mater. 7, 775 (1995).Google Scholar
3.Riedel, R. and Dressler, W., Ceram. Int. 22, 233 (1996).Google Scholar
4.Funayama, O., Nakahara, H., Tezuka, A., Ishii, T., and Isoda, T., J. Mater. Sci. 29, 2238 (1994).Google Scholar
5.Seher, M., Bill, J., Riedel, R., and Aldinger, F., Key Eng. Mater. 89–91, 101 (1994).Google Scholar
6.Seitz, J., Bill, J., Egger, N., and Aldinger, F., J. Eur. Ceram. Soc. 16, 885 (1996).Google Scholar
7.Monthioux, M. and Delverdier, O., J. Eur. Ceram. Soc. 16, 721 (1996).Google Scholar
8.Dixmier, J., Bellissent, R., Bahloul, D., and Goursat, P., J. Eur. Ceram. Soc. 13, 293 (1994).Google Scholar
9.Yokokawa, Y., Nanba, T., Yasui, I., Kaya, H., Maeshima, T., and Isoda, T., J. Am. Ceram. Soc. 74, 654 (1991).Google Scholar
10.Murakami, M. and Sakka, S., J. Non-Cryst. Solids 101, 271 (1988).Google Scholar
11.Uchino, T., Tokuda, Y., and Yoko, T., Phys. Rev. B 58, 5322 (1998).Google Scholar
12.Uchino, T. and Yoko, T., J. Chem. Phys. 108, 8130 (1998).Google Scholar
13.Yundurain, F. and Ordejon, P., Philos. Mag. B 70, 535 (1994).Google Scholar
14.Ordejon, P. and Yundurain, F., J. Non-Cryst. Solids 137, 891 (1991).Google Scholar
15.Domashevskaya, E.P., Timoshenko, Y.K., Terekhov, V.A., Desyatirikova, E.N., Bulycheva, E.Y., and Seleznev, V.N., J. Non-Cryst. Solids 114, 495 (1989).Google Scholar
16.Tanaka, I., Niihara, K., Nasu, S., and Adachi, H., J. Am. Ceram. Soc. 76, 2833 (1993).Google Scholar
17.Roothan, C.C.J, Rev. Mod. Phys. 23, 69 (1951).Google Scholar
18.Foresman, J.B. and Frisch, A., Exploring Chemistry with Electronic Structure Methods, 2nd ed. (Gaussian Inc., Pittsburgh, PA, 1996).Google Scholar
19.Aiyama, T., Fukunaga, T., Niihara, K., Hirai, T., and Suzuki, K., J. Non-Cryst. Solids 33, 131 (1979).Google Scholar
20.Misawa, M., Fukunaga, T., Niihara, K., Hirai, T., and Suzuki, K., J. Non-Cryst. Solids 34, 312 (1979).Google Scholar
21.Umesaki, N., Hirosaki, N., and Hirao, K., J. Non-Cryst. Solids 150, 120 (1992).Google Scholar
22.de Brito Mota, F., Justo, J.F., and Fazzio, A., Phys. Rev. B 58, 8323 (1998).Google Scholar
23.Pearson, W.B., The Crystal Chemistry and Physics of Metals and Alloys (Wiley-Interscience, New York, 1972).Google Scholar
24.Reyes-Serrato, A., Galvan, D.H., and Garzon, I.L., Phys. Rev. B 52, 6293 (1995).Google Scholar
25.Pauling, L., Nature of the Chemical Bond (Cornell Univ. Press, Ithaca, NY, 1945).Google Scholar
26.JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data, Suppl. 1, 14 (1985).Google Scholar