Hostname: page-component-6d856f89d9-nr6nt Total loading time: 0 Render date: 2024-07-16T04:18:35.208Z Has data issue: false hasContentIssue false

A modified embedded-atom method interatomic potential for the Cu–Zr system

Published online by Cambridge University Press:  31 January 2011

Young-Min Kim
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
Byeong-Joo Lee*
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
a)Address all correspondence to this author. e-mail:
Get access


A modified embedded-atom method (MEAM) interatomic potential for the Cu–Zr system has been developed based on the previously developed MEAM potentials for pure Cu and Zr. The potential describes fundamental physical properties and alloy behavior of the Cu–Zr binary system reasonably well. The applicability of the potential to atomistic investigations of mechanical and deformation behavior for the Cu–Zr binary and Cu–Zr-based multicomponent amorphous alloys is also demonstrated by showing that fully relaxed and realistic amorphous structures can be generated by molecular dynamics simulations.


Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1Drehman, A.J., Greer, A.L.Turnbull, D.: Bulk formation of a metallic glass: Pd40Ni40P20. Appl. Phys. Lett. 41, 716 1982CrossRefGoogle Scholar
2Zhang, T., Inoue, A.Masumoto, T.: Amorphous Zr–Al–TM (TM = Co,Ni,Cu) alloys with significant supercooled liquid region of over 100 K. Mater. Trans., JIM 32, 1005 1991CrossRefGoogle Scholar
3Peker, A.Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 1993CrossRefGoogle Scholar
4Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. Mater. Res. Bull. 24, 42 1999CrossRefGoogle Scholar
5Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000CrossRefGoogle Scholar
6Johnson, W.L.: Bulk amorphous metal–An emerging engineering material. JOM 54, 40 2002CrossRefGoogle Scholar
7Löffler, J.F.: Bulk metallic glasses. Intermetallics 11, 529 2003CrossRefGoogle Scholar
8Inoue, A.Zhang, W.: Formation, thermal stability and mechanical properties of Cu–Zr and Cu–Hf binary glassy alloy rods. Mater. Trans., JIM 45, 584 2004CrossRefGoogle Scholar
9Xu, D.H., Lohwongwatana, B., Duan, G., Johnson, W.L.Garland, C.: Bulk metallic glass formation in binary Cu-rich alloy series—Cu100−xZrx (x = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 2004CrossRefGoogle Scholar
10Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K.Ma, E.: Bulk metallic glass formation in the binary Cu–Zr system. Appl. Phys. Lett. 84, 4029 2004CrossRefGoogle Scholar
11Kwon, O.J., Kim, Y-C., Kim, K.B., Lee, Y.K.Fluery, E.: Formation of amorphous phase in the binary Cu–Zr alloy system. Met. Mater. Int. 12, 207 2006CrossRefGoogle Scholar
12Kobayashi, S., Maeda, K.Takeuchi, S.: Computer simulation of deformation of amorphous Cu57Zr43. Acta Metall. 28, 1641 1980CrossRefGoogle Scholar
13Wakeda, M., Shibutani, Y., Ogata, S.Park, J.: Relationship between local geometrical factors and mechanical properties for Cu–Zr amorphous alloys. Intermetallics 15, 139 2007CrossRefGoogle Scholar
14Duan, G., Xu, D.H., Zhang, Q., Zhang, G., Cagin, T., Johnson, W.L.III, W.A. Goddard: Molecular dynamics study of the binary Cu46Zr54 metallic glass motivated by experiments: Glass formation and atomic-level structure. Phys. Rev. B 71, 224208 2005Google Scholar
15Rosato, V., Guillope, M.Legrand, B.: Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model. Philos. Mag. A 59, 321 1989CrossRefGoogle Scholar
16Cleri, F.Rosato, V.: Tight-binding potentials for transition metals and alloys. Phys. Rev. B 48, 22 1993CrossRefGoogle ScholarPubMed
17Baskes, M.I.: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 1992CrossRefGoogle ScholarPubMed
18Daw, M.S.Baskes, M.I.: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 1983CrossRefGoogle Scholar
19Daw, M.S.Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 1984CrossRefGoogle Scholar
20Foiles, M., Baskes, M.I.Daw, M.S.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983 1986CrossRefGoogle ScholarPubMed
21Lee, B-J.Baskes, M.I.: Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 62, 8564 2000CrossRefGoogle Scholar
22Lee, B-J., Baskes, M.I., Kim, H.Cho, Y.K.: Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B 64, 184102 2001CrossRefGoogle Scholar
23Lee, B-J., Shim, J-H.Baskes, M.I.: Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys. Rev. B 68, 144112 2003CrossRefGoogle Scholar
24Kim, Y-M., Lee, B-J.Baskes, M.I.: Modified embedded-atom method interatomic potentials for Ti and Zr. Phys. Rev. B 74, 014101 2006CrossRefGoogle Scholar
25Lee, B-J.Lee, J.W.: A modified embedded atom method interatomic potential for carbon. Calphad 29, 7 2005CrossRefGoogle Scholar
26Lee, B-J.: A modified embedded atom method interatomic potential for silicon. Calphad 31, 95 2007CrossRefGoogle Scholar
27Lee, B-J., Wirth, B.D., Shim, J-H., Kwon, J., Kwon, S.C.Hong, J-H.: Modified embedded-atom method interatomic potential for the Fe-Cu alloy system and cascade simulations on pure Fe and Fe–Cu alloys. Phys. Rev. B 71, 184205 2005CrossRefGoogle Scholar
28Kim, J., Koo, Y.Lee, B-J.: Modified embedded-atom method interatomic potential for the Fe–Pt alloy system. J. Mater. Res. 21, 199 2006CrossRefGoogle Scholar
29Shim, J-H., Park, S.I., Cho, Y.W.Lee, B-J.: Modified embedded- atom method calculation for the Ni–W system. J. Mater. Res. 18, 1863 2003CrossRefGoogle Scholar
30Kim, Y-M.Lee, B-J.: A semi-empirical interatomic potential for the Cu–Ti binary system. Mater. Sci. Eng., A 449–451, 733 2007CrossRefGoogle Scholar
31Lee, B-J.: A modified embedded-atom method interatomic potential for the Fe–C system. Acta Mater. 54, 701 2006CrossRefGoogle Scholar
32Lee, B-J., Lee, T-H.Kim, S-J.: A modified embedded-atom method interatomic potential for the Fe–N system: A comparative study with the Fe–C system. Acta Mater. 54, 4597 2006CrossRefGoogle Scholar
33Rose, J.H., Smith, J.R., Guinea, F.Ferrante, J.: Universal features of the equation of state of metals. Phys. Rev. B 29, 2963 1984CrossRefGoogle Scholar
34Baskes, M.I.: Determination of modified embedded atom method parameters for nickel. Mater. Chem. Phys. 50, 152 1997CrossRefGoogle Scholar
35Ansara, I., Pasturel, A.Buschow, K.H.: Enthalpy effects in amorphous alloys intermetallic compounds in the system Zr–Cu. Phys. Status Solidi A 69, 447 1982CrossRefGoogle Scholar
36Kleppa, O.J.Watanabe, S.: Thermochemistry of alloys of transition metals: Part III. Copper–silver,–titanium,–zirconium, and hafnium at 1373 K. Metall. Trans. B 13, 391 1982CrossRefGoogle Scholar
37Carvalho, E.M.Harris, I.R.: Constitutional and structural studies of the intermetallic phase, ZrCu. J. Mater. Sci. 15, 1224 1980CrossRefGoogle Scholar
38Nevitt, M.N.Downey, J.W.: A family of intermediate phases having the Si2Mo-type structure. Trans. Metall. Soc. AIME 224, 195 1962Google Scholar
39Zeng, K-J.Hämäläinen, M.: A new thermodynamic description of the Cu–Zr system. J. Phase Equilib. 15, 577 1994CrossRefGoogle Scholar
40Sommer, F.Choi, D.K.: Thermodynamic investigations of liquid and glassy copper–zirconium alloys. Z. Metallkd. 80, 263 1989Google Scholar
41Turchanin, M.A.Nikolaenko, I.V.: Enthalpies of solution of titanium, zirconium, and hafnium in liquid copper. J. Alloys Compd. 236, 236 1996CrossRefGoogle Scholar
42Witusiewicz, V., Arpshofen, I.Sommer, F.: Thermodynamics of liquid Cu–Si and Cu–Zr alloys. Z. Metallkd. 88, 866 1997Google Scholar
43Ghosh, G.: First-principles calculations of structural energetics of Cu–TM (TM = Ti, Zr, Hf) intermetallics. Acta Mater. 55, 3347 2007CrossRefGoogle Scholar
44Lee, B-J.Shim, J-H.: A modified embedded atom method interatomic potential for the Cu–Ni system. Calphad 28, 125 2004CrossRefGoogle Scholar
45Subramanian, P.R., Chakrabarti, D.J.Laughlin, D.E.: Phase Diagrams of Binary Copper Alloys ASM International Materials Park, OH 1993 497Google Scholar
46Parrinello, M.Rahman, A.: Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 45, 1196 1980CrossRefGoogle Scholar
47Parrinello, M.Rahman, A.: Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182 1981CrossRefGoogle Scholar
48Finney, J.L.: Modelling the structures of amorphous metals and alloys. Nature 266, 309 1977CrossRefGoogle Scholar
49Chen, H.S.Waseda, Y.: Structure of glassy Zr–Cu and Nb–Ni alloys. Phys. Status Solidi A 51, 593 1979CrossRefGoogle Scholar
50Sadoc, A., Calvayrac, Y., Quivy, A., Harmelin, M.Flank, A.M.: Study of the local structure of Cu–Zr amorphous alloys by EXAFS. Effect of a structural relaxation. J. Non-Cryst. Solids 65, 109 1984CrossRefGoogle Scholar