Hostname: page-component-5d59c44645-k78ct Total loading time: 0 Render date: 2024-02-21T11:43:53.967Z Has data issue: false hasContentIssue false

Microstructure and growth of joins in melt-textured YBa2Cu3O7−δ

Published online by Cambridge University Press:  31 January 2011

A. D. Bradley
Affiliation:
IRC in Superconductivity, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
W. Lo
Affiliation:
Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, Texas 77204
M. Mironova
Affiliation:
Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, Texas 77204
N. H. Babu
Affiliation:
IRC in Superconductivity, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
D. A. Cardwell
Affiliation:
IRC in Superconductivity, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
A. M. Campbell
Affiliation:
Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, Texas 77204
K. Salama
Affiliation:
Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, Texas 77204
Get access

Abstract

Joining of melt-textured YBa2Cu3O7-δ (Y123) grains has been achieved without use of an external agent. The technique uses barium-cuprate liquid phase released from platelet boundaries to mediate the growth of Y123 at the interface between two grains. The epitaxial nature and high quality of the growth was determined by optical and transmission electron microscopy. The composition of Ba–Cu–O phases found in some parts of the joins was determined by electron probe microanalysis. A clean low-angle join was found to consist of a grain boundary with dislocation networks and facets. Transport critical current measurements on this type of join revealed strongly coupled behavior. The technique shows promise for the joining of melt-textured material for power engineering applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Murakami, M., Supercond. Sci. Technol. 5, 185 (1992).Google Scholar
2Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 8, 1240 (1993).Google Scholar
3Weinstein, R., Sawh, R., Ren, Y.R., and Parks, D., Mater. Sci. Eng. B 53, 38 (1998).Google Scholar
4Salama, K. and Lee, D.F., Supercond. Sci. Technol. 7, 177 (1994).Google Scholar
5Hull, J.R., Supercond. Sci. Technol. 13, R1 (2000).Google Scholar
6Lo, W., Cardwell, D.A., Dewhurst, C.D., and Dung, S.L., J. Mater. Res. 11, 786 (1996).Google Scholar
7Meng, R.L., Gao, L., Gautierpicard, P., Ramirez, D., Sun, Y.Y., and Chu, C.W., Physica C 232, 337 (1994).Google Scholar
8Chen, I.G., Jamn, G., and Hsu, J.C., Mater. Sci. Eng. B 53, 132 (1998).Google Scholar
9Dewhurst, C.D., Lo, W., Shi, Y.H., and Cardwell, D.A., Mater. Sci. Eng. B 53, 169 (1998).Google Scholar
10Field, M.B., Larbalestier, D.C., Parikh, A., and Salama, K., Physica C 280, 221 (1997).Google Scholar
11Mironova, M., Du, G., Rusakova, I., and Salama, K., Physica C 271, 15 (1996).Google Scholar
12Todt, V.R., Zhang, X.F., Miller, D.J., Louis-Weber, M. St., and Dravid, V.P., Appl. Phys. Lett. 69, 3746 (1996).Google Scholar
13Salama, K. and Selvamanickam, V., Appl. Phys. Lett. 60, 898 (1992).Google Scholar
14Shi, D., Appl. Phys. Lett. 66, 2573 (1995).Google Scholar
15Kimura, K., Miyamoto, K., and Hashimoto, M., in Advances in Superconductivity VII, Proceedings of ISS’94 (Springer, Tokyo, 1994), p. 681.Google Scholar
16Zheng, H., Jiang, M., Nikolova, R., Welp, U., Paulikas, A.P., Huang, Y., Crabtree, G.W., Veal, B.W., and Claus, H., Physica C 322, 1 (1999).Google Scholar
17Lo, W., Cardwell, D.A., Bradley, A.D., Doyle, R.A., Shi, Y.H., and Lloyd, S., IEEE Trans. Appl. Supercond. 9, 2042 (1999).Google Scholar
18Kim, C.J., Kim, K.B., Won, D.Y., and Hong, G.W., Physica C 228, 351 (1994).Google Scholar
19Lo, W. and Cardwell, D.A., Mater. Sci. Eng. B 53, 45 (1998).Google Scholar
20Sawano, K., Morita, M., Tanaka, M., Sasaki, T., Kimura, K., Takebayashi, S., Kimura, M., and Miyamoto, K., Jpn. J. Appl. Phys. 30, L1157 (1991).Google Scholar
21Kim, C.J., Kim, K.B., Kuk, I.H., and Hong, G.W., Mater. Sci. Eng. B 39, 25 (1996).Google Scholar
22Krauns, C., Sumida, M., Tagami, M., Yamada, Y., and Shiohara, Y., Z. Phys. B 96, 207 (1994).Google Scholar
23Cardwell, D.A., Mater. Sci. Eng. B 53, 1 (1998).Google Scholar
24Chrosch, J. and Salje, E.K.H., Ferroelectrics 194, 149 (1997).Google Scholar
25Bradley, A.D., Doyle, R.A., Lo, W., Cardwell, D.A., and Campbell, A.M., Supercond. Sci. Technol. 12, 1054 (1999).Google Scholar
26Sandiumenge, F., Martinez, B., and Obradors, X., Supercond. Sci. Technol. 10, A93 (1997).Google Scholar
27Bradley, A.D., Doyle, R.A., Charalambous, D., Lo, W., Cardwell, D.A., Campbell, A.M., and Ph. Vanderbemden, IEEE Trans. Appl. Supercond. 9, 2038 (1999).Google Scholar
28Chiang, Y., Birnie, D.P., and Kingery, W.D., Physical Ceramics, (Wiley, New York, 1997), pp. 392, 421.Google Scholar
29Yan, Y., Cardwell, D.A., Campbell, A.M., and Stobbs, W.M., J. Mater. Res. 11, 2990 (1996).Google Scholar
30Chisholm, M.F. and Pennycook, S.J., Nature 351, 47 (1991).Google Scholar
31Tsu, I.F., Babcock, S.E., and Kaiser, D.L., J. Mater. Res. 11, 1383 (1996).Google Scholar