Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-r9chl Total loading time: 0.321 Render date: 2021-06-21T17:44:14.433Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

The mechanical behavior of ceramic–metal laminate under thermal shock

Published online by Cambridge University Press:  31 January 2011

Dov Sherman
Affiliation:
Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
Doron Schlumm
Affiliation:
Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
Get access

Abstract

A new material system for applications involving thermal shock is proposed. The system consists of thin layers of ceramics and thinner metallic interlayers. In this study, a ceramic/metal laminate was constructed from Coor's ADS96R thin plates alternating with thinner Wesgo Cusil Active Braze Alloy interlayer foils and joined in active brazing. The maximum brazing temperature was 845 °C. Square laminated plates were quenched in room-temperature distilled water, where a very large heat transfer coefficient exists, and therefore, severe conditions of thermal shock occur. The laminated plates, initially at temperatures of 600 and 800 °C, were quenched at their bottom surface only in a specially designed apparatus. The temperatures at the top and the bottom surfaces of the specimens were measured by means of two thermocouples during quenching. The basic features of this architecture are described. The dominant behavior was the absence of interaction between the biaxial cracking mechanisms in a ceramic layer with those in an adjacent ceramic layer, and localization of the damage to those layers that experienced sufficient tensile stresses. The result was a dramatic increase of the residual strength after thermal shock. In addition, R-curve behavior upon mechanical loading caused by plastic deformation of the metallic interlayer was observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Hasselman, D.P.H, J. Am. Ceram. Soc. 52, 600 (1955).CrossRefGoogle Scholar
2.Jin, Z-H and Mai, Y-W., J. Am. Ceram. Soc. 78, 1873 (1995).CrossRefGoogle Scholar
3.Claussen, N. and Hasselman, D.P.H, in Thermal Stresses in Severe Environments, edited by Hasselman, D.P.H and Heller, R.A. (Plenum, New York, 1980), p. 381.CrossRefGoogle Scholar
4.Becher, P.F. and Warwick, W.H., NATO ASI Series, Series E: Applied Science, edited by Schneider, G.A. and Petzow, G. (Kluwer Academic Publishers, 1993), Vol. 241, p 37.Google Scholar
5.Kingery, W.D., J. Am. Ceram. Soc. 38, 3 (1955).CrossRefGoogle Scholar
6.Wang, H. and Singh, R.N., Int. Mater. Rev. 39, 6 (1994).CrossRefGoogle Scholar
7.Becher, P.F., Comm. Am. Ceram. Soc. 1, C17 (1981).Google Scholar
8.Upadhya, K., Yang, J.M., and Hoffman, W.P., J. Am. Ceram. Soc. Bull. 75(12), 51 (1997).Google Scholar
9.Bøggild, O.B., Kong. Dansk. Vidensk. Selskabs Skrifter, 9, 235 (1930).Google Scholar
10.Currey, J.D., Proc. Roy. Soc. B196, 443 (1997).Google Scholar
11.Sherman, D., Lemaitre, J., and Leckie, F.A., Acta Metall. 43, 3261 (1995).CrossRefGoogle Scholar
12.Sherman, D., Lamaitre, J., and Leckie, F.A., Acta. Metall. 43, 4483 (1995).CrossRefGoogle Scholar
13.Cutler, W.A., Zok, F.W., and Lange, F.F., J. Am. Ceram. Soc. 79, 1825 (1996).CrossRefGoogle Scholar
14.Clegg, W.J., Kendall, K., Alford, N.M., Birchall, D., and Button, T.W., Nature 347, 455 (1990).CrossRefGoogle Scholar
15.Clegg, W.J., Acta. Metall. Mater. 40, 3093 (1992).CrossRefGoogle Scholar
16.Zhang, L. and Krstic, V.D., Theo. App. Frac. Mech. 24, 13 (1995).CrossRefGoogle Scholar
17.Marshall, D.B., Ratto, J.J., and Lange, F.F., J. Am. Ceram. Soc. 74, 2979 (1991).CrossRefGoogle Scholar
18.Evans, A.G., Bartlett, A., Davis, J.B., Flinn, B.D., Turner, M., and Reimanis, I.E., Scripta Metall. Mater. 25, 1003 (1991).CrossRefGoogle Scholar
19.Oh, T.S., Rodel, J., Cannon, R.M., and Ritchie, R.O., Acta Metall. 36, 2083 (1988).CrossRefGoogle Scholar
20.Reimanis, I.E., Dalgleish, B.J., and Evans, A.G., Acta Metall. 39, 3133 (1991).CrossRefGoogle Scholar
21.Schussler, A. and Gahr, K-H.Z, J. de Physique IV 1, C7121 (1991).Google Scholar
22.Cho, C-H. and Yu, Jin, Scripta Metall. 26, 1737 (1990).Google Scholar
23.Naka, M., Sahpath, K., Okamoto, I., and Arata, Y., Mater. Sci. Eng. 98, 407 (1988).CrossRefGoogle Scholar
24.Naka, M., Kim, K., Okamoto, I., Trans. of JWRI 13, 157 (1984).Google Scholar
25.Sherman, D., Mater. Lett. 33, 255 (1998).CrossRefGoogle Scholar
26.Sherman, D. and Schlumm, D. (unpublished).Google Scholar
27.Evans, A.G. and Hutchinson, J.W., Acta Metall. Mater. 43, 2507 (1995).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The mechanical behavior of ceramic–metal laminate under thermal shock
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The mechanical behavior of ceramic–metal laminate under thermal shock
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The mechanical behavior of ceramic–metal laminate under thermal shock
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *