Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-22T21:10:27.643Z Has data issue: false hasContentIssue false

Magnetization and magnetocaloric effect in La0.7Pb0.3MnO3 ceramics and 0.85(La0.7Pb0.3MnO3)–0.15(PbTiO3) composite

Published online by Cambridge University Press:  17 December 2014

Ekateina Mikhaleva
Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036, Russia
Evgeniy Eremin
Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036, Russia; and Siberian Federal University, Krasnoyarsk 660079, Russia
Igor Flerov*
Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036, Russia; and Siberian Federal University, Krasnoyarsk 660079, Russia
Andrey Kartashev
Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036, Russia
Klara Sablina
Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036, Russia
Nataly Mikhashenok
Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036, Russia
a)Address all correspondence to this author. e-mail:
Get access


The magnetization behavior under temperature and magnetic field variation was investigated for La0.7Pb0.3MnO3 ceramics and ferromagnetic–ferroelectric 0.85(La0.7Pb0.3MnO3)–0.15(PbTiO3) composite. The second-order ferromagnetic phase transition in manganite is shifted to the tricritical point in composite material. Comparison of the intensive caloric effect and the difference between relative cooling powers (RCP) in both materials proves a significant role of intrinsic pressure in elevating caloric efficiency in composite induced by elastic coupling between the grains of LPM and PT components. No temperature change in composite under an electric field of 2 kV/cm associated with electrocaloric effect or indirect magnetoelectric coupling was observed. The effect of magnetic field on some peculiar temperatures is considered. A contribution from pressure generated by magnetic field to baric coefficient dT/dp of ferromagnetic transformation temperature in composite was suggested. The results obtained were analyzed in the framework of the magnetic equation of state and compared with the experimentally measured heat capacity.

Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Tishin, M. and Spichkin, Y.: The Magnetocaloric Effect and its Application (Institute of Physics Publishing, Bristol and Philadelphia, 2003), p. 475.CrossRefGoogle Scholar
Planes, A., Manosa, L., and Acet, M.: Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys.: Condens. Matter 21, 233201(2009).Google ScholarPubMed
Wei, Z., Chak-Tong, A., and You-Wei, D.: Review of magnetocaloric effect in perovskite-type oxides. Chin. Phys. B 22, 057501 (2013).Google Scholar
Scott, J.F.: Electrocaloric materials. Annu. Rev. Mater. Res. 41, 229 (2011).CrossRefGoogle Scholar
Valant, M.: Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater. Sci. 57, 980 (2012).CrossRefGoogle Scholar
Lu, S-G. and Zhang, Q.: Large electrocaloric effect in relaxor ferroelectrics. J. Adv. Dielectr. 2, 1230011 (2012).CrossRefGoogle Scholar
Strässle, T. and Furrer, A.: Cooling by adiabatic (de)pressurization – The barocaloric effect. High Pressure Res. 17, 325 (2000).CrossRefGoogle Scholar
Gorev, M.V., Flerov, I.N., Bogdanov, E.V., Voronov, V.N., and Laptash, N.M.: Barocaloric effect near the structural phase transition in the Rb2KTiOF5 oxyfluoride. Phys. Solid State 52, 377 (2010).CrossRefGoogle Scholar
Mikhaleva, E.A., Flerov, I.N., Bondarev, V.S., Gorev, M.V., Vasiliev, A.D., and Davydova, T.N.: Phase transitions and caloric effects in ferroelectric solid solutions of ammonium and rubidium hydrosulfates. Phys. Solid State 53, 510 (2011).CrossRefGoogle Scholar
Flerov, I., Gorev, M., Tressaud, A., and Laptash, N.: Perovskite-like fluorides and oxyfluorides: Phase transitions and caloric effects. Crystallogr. Rep. 56, 9 (2011).CrossRefGoogle Scholar
Annaorazov, M.P., Nikitin, S.A., Tyurin, A.L., Asatryan, K.A., and Dovletov, A.K.: Anomalously high entropy change in FeRh alloy. J. Appl. Phys. 79, 1689 (1996).CrossRefGoogle Scholar
Manosa, L., Gonzalez-Alonso, D., Planes, A., Bonnot, E., Barrio, M., Tamarit, J.L., Aksoy, S., and Acet, M.: Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat. Mater. 9, 478 (2010).CrossRefGoogle ScholarPubMed
Castillo-Villa, P.O., Mañosa, L., Planes, A., Soto-Parra, D.E., Sānchez-Llamazares, J.L., Flores-Zūñiga, H., and Frontera, C.: Elastocaloric and magnetocaloric effects in Ni-Mn-Sn(Cu) shape-memory alloy. J. Appl. Phys. 113, 053506 (2013).CrossRefGoogle Scholar
Gschneidner, K.A. Jr., Pecharsky, V.K., Pecharsky, A.O., Ivtchenko, V.V., and Levin, E.M.: The nonpareil R5(SixGe1-x)4 phases. J. Alloys Compd. 303304, 214 (2000).CrossRefGoogle Scholar
de Oliveira, N.A.: Giant magnetocaloric and barocaloric effects in R5Si2Ge2 (R = Tb, Gd). J. Appl. Phys. 113, 033910 (2013).CrossRefGoogle Scholar
Mikhaleva, E., Flerov, I., Gorev, M., Molokeev, M., Cherepakhin, A., Kartashev, A., Mikhashenok, N., and Sablina, K.: Caloric characteristics of PbTiO3 in the temperature range of the ferroelectric phase transition. Phys. Solid State 54, 1832 (2012).CrossRefGoogle Scholar
Vopson, M.M.: The multicaloric effect in multiferroic materials. Solid State Commun. 152, 2067 (2012).CrossRefGoogle Scholar
Lisenkov, S., Mani, B.K., Chang, C-M., Almand, J., and Ponomareva, I.: Multicaloric effect in ferroelectric PbTiO3 from first principles. Phys. Rev. B 87, 224101 (2013).CrossRefGoogle Scholar
Binek, C. and Burobina, V.: Near-room-temperature refrigeration through voltage-controlled entropy change in multiferroics. Appl. Phys. Lett. 102, 031915 (2013).CrossRefGoogle Scholar
Kartashev, V., Mikhaleva, E.A., Gorev, M.V., Bogdanov, E.V., Cherepakhin, A.V., Sablina, K.A., Mikhashonok, N.V., Flerov, I.N., and Volkov, N.V.: Thermal properties, magneto- and baro-caloric effects in La0.7Pb0.3MnO3 single crystal. J. Appl. Phys. 113, 073901 (2013).CrossRefGoogle Scholar
Mikhaleva, E., Flerov, I., Kartashev, A., Gorev, M., Cherepakhin, A., Sablina, K., Mikhashenok, N., Volkov, N., and Shabanov, A.: Caloric effects and phase transitions in ferromagnetic–ferroelectric composites xLa0.7Pb0.3MnO3–(1-x)PbTiO3 . J. Mater. Res. 28, 3322 (2013).CrossRefGoogle Scholar
Fesenko, E.G., Gavrilyachenko, V.G., and Zarochentsev, E.V.: Segnetoelektricheskie svoistva monokristallov titanata svinca. Izv. Akad. Nauk SSSR, Ser. Fiz 34, 2541 (1970).Google Scholar
Volkov, N., Petrakovskii, G., Boeni, P., Clementyev, E., Patrin, K., Sablina, K., Velikanov, D., and Vasiliev, A.: Intrinsic magnetic inhomogeneity of Eu substituted La0.7Pb0.3MnO3 single crystals. J. Magn. Magn. Mater. 309, 1 (2007).CrossRefGoogle Scholar
Gutiérrez, J., Fernández, J.R., Barandiarán, J.M., Orúe, I., and Righi, L.: Magnetocaloric effect in (La0.55Bi0.15)Ca0.3MnO3 perovskites. Sens. Actuators, A 142, 549 (2008).CrossRefGoogle Scholar
Sun, Y., Kamarad, J., Arnold, Z., Kou, Z., and Cheng, Z.: Tuning of magnetocaloric effect in a La0.69Ca0.31MnO3 single crystal by pressure. Appl. Phys. Lett. 88, 102505 (2006).CrossRefGoogle Scholar
Min, S.G., Kim, K.S., Yu, S.C., Suh, H.S., and Lee, S.W.: Magnetocaloric properties of La1-xPbxMnO3 (x = 0:1; 0:2; 0:3) compounds. IEEE Trans. Magn. 41, 2760 (2005).CrossRefGoogle Scholar
Rocco, D.L., Silva, R.A., Carvalho, A.M.G., Coelho, A.A., Andreeta, J.P., and Gama, S.: Magnetocaloric effect of La0.8Sr0.2MnO3 compound under pressure. J. Appl. Phys. 97, 10M317 (2005).CrossRefGoogle Scholar
Pecharsky, V.K. and Gschneidner, K.A. Jr.: Magnetocaloric effect from indirect measurements: Magnetization and heat capacity. J. Appl. Phys. 86, 565 (1999).CrossRefGoogle Scholar
Alexandrov, K.S. and Flerov, I.N.: The regions of applicability of the thermodynamic theory of structural phase transitions close to the tricritical point. Sov. Phys. Solid State 21, 195 (1979).Google Scholar