Hostname: page-component-797576ffbb-k7d4m Total loading time: 0 Render date: 2023-12-01T20:59:40.367Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Investigation of the stability of glassy state in the Zr- and Hf-based glassy alloys correlated with their transformation behavior

Published online by Cambridge University Press:  31 January 2011

Junji Saida*
Affiliation:
Inoue Superliquid Glass Project, ERATO, Japan Science and Technology Corporation (JST), Yagiyamaminami 2-1-1, Sendai 982–0807, Japan
Chunfei Li
Affiliation:
Inoue Superliquid Glass Project, ERATO, Japan Science and Technology Corporation (JST), Yagiyamaminami 2-1-1, Sendai 982–0807, Japan
Mitsuhide Matsushita
Affiliation:
JEOL Ltd., Akishima, Tokyo 196–8558, Japan
Akihisa Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
*
a)Address all correspondence to this author. e-mail: jsaida@sendai.jst.go.jp
Get access

Abstract

The transformation behavior from glassy state was investigated in Zr- and Hf-based glassy alloys. The primary phases are metastable face-centered-cubic (fcc) Zr2Ni and fcc Hf2Ni phases in the Zr65Al7.5Ni10Cu17.5 and Hf65Al7.5Ni10Cu17.5 glassy alloys, respectively. By substitution of 5 at.% Pd for Cu, the primary phase changes to an icosahedral quasicrystalline phase in both alloys. It is found that the addition of elements, which have a positive or weak chemical affinity with one of the constitutional elements in the Zr–Al–Ni–Cu and Hf–Al–Ni–Cu glassy alloys, is effective for the precipitation of the icosahedral phase. It is suggested that Pd plays a dominant role in an increase in the number of nucleation sites. Since an icosahedron is contained as a structure unit in the icosahedral, fcc Zr2Ni and fcc Hf2Ni phases, it is implied that these phases are correlated with the local icosahedral order. The high-resolution transmission electron microscopy images of the as-spun Zr65Al7.5Ni10Cu7.5Pd10 and Hf65Al7.5Ni10Cu12.5Pd5 alloys reveal a possibility of the existence of the icosahedral ordered regions. It is therefore, concluded that the icosahedral short- or medium-range order exists and it stabilizes the glassy state in the Zr- and Hf-based multicomponent alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans. JIM. 31, 177 (1990).Google Scholar
2.Inoue, A., Zhang, T., and Masumoto, T., J. Non-Cryst. Solids 156–159, 473 (1993).Google Scholar
3.Peker, A.L. and W.Johnson, L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
4.Johnson, W.L., MRS Bulletin 24 (10), 42 (1999).Google Scholar
5.Zhang, T., Inoue, A., and Masumoto, T., Mater. Trans. JIM. 32, 1005 (1991).Google Scholar
6.Li, C. and Inoue, A., Phys. Status Solidi 184, 291 (2001).Google Scholar
7.Li, C. and Inoue, A., J. Mater. Res. 16, 1190 (2001)Google Scholar
8.Chen, M. W., Zhang, T., Inoue, A., Sakai, A., and Sakurai, T., Appl. Phys. Lett. 75, 1697 (1999).Google Scholar
9.Inoue, A., Zhang, T., Saida, J., Matsushita, M., Chen, M. W., and Sakurai, T., Mater. Trans. JIM. 40, 1181 (1999).Google Scholar
10.Li, C., Saida, J., Matsushita, M., and Inoue, A., Appl. Phys. Lett. 77, 528 (2000).Google Scholar
11.Saida, J. and Inoue, A., J. Phys. Condens. Matter 13, L73 (2001).Google Scholar
12.Saida, J. and Inoue, A., Jpn. J. Appl. Phys. 40, L769 (2001)Google Scholar
13.Li, C., Saida, J., Matsushita, M., and Inoue, A., Philos. Mag. Lett. 80, 621 (2000).Google Scholar
14.Inoue, A., Mater. Trans. JIM. 36, 866 (1995).Google Scholar
15.Inoue, A., Zhang, T., Chen, M. W., Sakurai, T., Saida, J., and Matsushita, M., J. Mater. Res. 15, 2195 (2000).Google Scholar
16.Xing, L. Q., Hufnagel, T. C., Eckert, J., Loöser, W., and Schultz, L., Appl. Phys. Lett. 77, 1970 (2000).Google Scholar
17.Murty, B. S., Ping, D. H., Hono, K., and Inoue, A., Appl. Phys. Lett. 76, 55 (2000).Google Scholar
18.Altounian, Z., Batalla, E., Strom-Olsen, J.O., and Walter, J. L., J. Appl. Phys. 61, 149 (1987).Google Scholar
19.Li, C. and Inoue, A., Phys. Rev. B 63, 172201 (2001).Google Scholar
20.Li, C., Ranganathan, S., and Inoue, A., Acta. Mater. 49, 1903 (2001).Google Scholar
21.de Boer, F.R., Boom, R., Mattens, W.C. M., Miedema, A. R., and Niessen, A. K., in Cohesion in Metals, edited by de Boer, F.R. and Pettifor, D. G., (North-Holland, Amsterdam, The Netherlands, 1988), p.361.Google Scholar
22.Koöster, U., Janlewing, R., and Zander, D., in Proc. Int. Symp. Amo. Nanocryst. Mater., edited by Inoue, A. (Japan. Soc. Prom. Sci., Akiu, Sendai, Japan, 2000), p.69.Google Scholar
23.Saida, J., Matsushita, M., and Inoue, A., Mater. Trans. 42, 1497 (2001).Google Scholar
24.Saida, J., Matsushita, M., Li, C., and Inoue, A., Philos. Mag. Lett. 80, 737 (2000).Google Scholar
25.Matsushita, M., Saida, J., Zhang, T., Inoue, A., Chen, M. W., and Sakurai, T., Philos. Mag. Lett. 80, 79 (2000).Google Scholar
26.Saida, J., Matsushita, M., and Inoue, A., Mater. Trans. JIM. 41, 1505 (2000).Google Scholar
27.Koöster, U., Meinhardt, J., Roos, S., and Busch, R., Mater. Sci. Eng. A 226–228, 995 (1997).Google Scholar
28.Inoue, A., Acta. Mater. 48, 277 (2000).Google Scholar
29.Zhang, Z. and Kuo, K. H., Philos. Mag. B 54, L83 (1986).Google Scholar
30.Yang, B., Philos. Mag. Lett. 57, 171 (1988).Google Scholar
31.Hirotsu, Y., Anazawa, K., and Okubo, T., Mater. Trans. JIM. 31, 573 (1990).Google Scholar
32.Saida, J., Matsushita, M., Li, C., and Inoue, A., Philos. Mag. Lett. 81, 39 (2001).Google Scholar
33.Murty, B. S., Ping, D. H., and Hono, K., Appl. Phys. Lett. 77, 1102 (2000).Google Scholar
34.Li, C. and Inoue, A., Mater. Trans. 42, 176 (2001).Google Scholar