Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-22T01:21:33.206Z Has data issue: false hasContentIssue false

Interfacial and twin boundary structures of nanostructured Cu–Ag filamentary composites

Published online by Cambridge University Press:  31 January 2011

K. H. Lee
Affiliation:
Department of Metallurgical Engineering, Chungnam National University, Taedok Science Town, Taejon 305–764, Korea
S. I. Hong*
Affiliation:
Department of Metallurgical Engineering, Chungnam National University, Taedok Science Town, Taejon 305–764, Korea
*
a) Address all correspondence to this author. e-mail: sihong@cnu.ac.kr
Get access

Abstract

A high-resolution transmission electron microscope was used to study the interfacial and twin boundary structure of nanostructured Cu–Ag filamentary composites. Copper matrix and silver filaments have the orientation relationship {111}Cu∥{111}Ag and 〈111〉Cu∥〈111〉Ag. In some regions, twin bands propagated through the silver filaments with some boundary steps at the matrix/filament interface, and the silver filament appeared to be kinked in the twin band in the same direction as the twinning shear. This suggests that twins propagated after the formation of silver filament, and twin bands were deformation twins. At the matrix/filament interface, misfit interface dislocations were introduced periodically to relieve the misfit strain. The distance between interfacial misfit dislocations along the matrix/filament interface in the longitudinal section was measured to be 1.88 nm, which is in good agreement with that (1.81 nm) calculated based on lattice misfit. In Cu–Ag nanocomposites, the spacing between Moire fringes was found to be quite close to that between interfacial misfit dislocations.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wood, J.F., Ph.D. Thesis, McMaster University, Hamilton, Ontario, Canada (1994).Google Scholar
2.Freudenberger, J., Adv. Eng. Mater. 4, 677 (2002).3.0.CO;2-I>CrossRefGoogle Scholar
3.Dew-Hughes, D., Mater. Sci. Eng. 168A, 35 (1993).CrossRefGoogle Scholar
4.Embury, J.D., Hill, M.A., Spitzig, W.A., and Sakai, Y., MRS Bull. 18(8), 57 (1993).CrossRefGoogle Scholar
5.Hong, S.I. and Hill, M.A., Acta Mater. 46, 4111 (1998).CrossRefGoogle Scholar
6.Sakai, Y. and Schneider-Muntau, H-J., Acta Mater. 45, 1017 (1997).CrossRefGoogle Scholar
7.Hong, S.I. and Hill, M.A. (unpublished, 2003).Google Scholar
8.Sakai, Y., Inoue, K., Asano, T., Wada, H., and Maeda, H., Appl. Phys. Lett. 59, 2965 (1991).CrossRefGoogle Scholar
9.Thilly, L., Veron, M., Ludwig, O., Lecouturier, F., Peyrade, J.P., and Askenazy, S., Philos. Mag. 82, 925 (2002).CrossRefGoogle Scholar
10.Han, K., Vasquez, A.A., Xin, Y., and Kalu, P.N., Acta Mater. 51, 767 (2003).CrossRefGoogle Scholar
11.Verhoeven, J.D., Chumbley, L.S., Laabs, F.C., and Spitzig, W.A., Acta Metall. Mater. 39, 2825 (1991).CrossRefGoogle Scholar
12.Funkenbusch, P.D. and Courtney, T.H., Acta Metall. 33, 913 (1985).CrossRefGoogle Scholar
13.Trybus, C.L. and Spitzig, W.A., Acta Metall. 37, 1971 (1989).CrossRefGoogle Scholar
14.Courtney, T.H., in Metal Matrix Composites: Processing and Interfaces, edited by Everett, R.K. and Arsenault, R.J. (Academic Press, San Diego, CA, 1991), p. 101.Google Scholar
15.Biselli, C. and Morris, D.G., Acta Metall. Mater. 44, 493 (1996).CrossRefGoogle Scholar
16.Hong, S.I., J Mater. Res. 15, 1889 (2000).CrossRefGoogle Scholar
17.Spitzig, W.A., Trybus, C.L., and Verhoeven, J.D., in Metal Matrix Composites: Mechanisms and Properties, edited by Everett, R.K. and Arsenault, R.J. (Academic Press, San Diego, CA 1991), p. 151.Google Scholar
18.Biselli, C. and Morris, D.G., Acta Metall. Mater. 42, 163 (1994).CrossRefGoogle Scholar
19.Thilly, L., Lecouturier, F., and Stebut, J. von, Acta Mater. 50, 5049 (2002).CrossRefGoogle Scholar
20.Sauvage, X., Renaud, L., Deconihout, B., Blavette, D., Ping, D.H., and Hono, K., Acta Mater. 49, 389 (2001).CrossRefGoogle Scholar
21.Snoeck, E., Lecouturier, F., Thilly, L., Casanove, M.J., Rakoto, H., Coffe, G., Askenazy, S., Peyrade, J.P., Roucau, C., Pantsyrny, V., Shikov, A., and Nikulin, A., Scripta Mater. 38, 1643 (1998).CrossRefGoogle Scholar
22.Leprince-Wang, Y., Han, K., Huang, Y., and Yu-Zhang, K., Mater. Sci. Eng. A 351, 214 (2003).CrossRefGoogle Scholar
23.Hong, S.I., Adv. Eng. Mater. 3, 475 (2001).3.0.CO;2-C>CrossRefGoogle Scholar
24.Hong, S.I., Hill, M.A., Sakai, Y., Wood, J.T., and Embury, J.D., Acta Metall. Mater. 43, 3313 (1995).CrossRefGoogle Scholar
25.Benghalem, A. and Morris, D.G., Acta Metall. Mater. 45, 397 (1997).CrossRefGoogle Scholar
26.Frommeyer, G. and Wassermann, G., Acta Metall. 23, 1353 (1975).CrossRefGoogle Scholar
27.Walder, S. and Ryder, P.E., J. Appl. Phys. 73, 6100 (1993).CrossRefGoogle Scholar
28.Phillips, V., Acta Metall. 14, 271 (1966).CrossRefGoogle Scholar
29.Edington, J.W., in Electron Diffraction in the Electron Microscope (Phillips Technical Library, Edindhoven, The Netherlands, 1975), p. 62.CrossRefGoogle Scholar
30.Hirsch, P., Howe, A., Nicholson, R.B., Pashley, D.W., and Whelan, M.J., Electron Microscopy of Thin Crystals (Robert E. Krieger Publishing Company, Hungtington, NY, 1977), p. 343.Google Scholar
31.Wang, N., Wang, Z., Aust, K.T., and Erb, U., Acta Metall. Mater. 43, 519 (1995).CrossRefGoogle Scholar
32.Inoue, A., Horio, Y., Kim, Y.H., and Matsumoto, T., Mater. Trans. JIM 33, 669 (1992).CrossRefGoogle Scholar
33.Kim, H.S. and Hong, S.I., Acta Mater. 47, 2059 (1999).CrossRefGoogle Scholar
34.Rao, G., Howe, J.M., and Wynblatt, P., Scripta Metal. Mater. 30, 731 (1994).CrossRefGoogle Scholar
35.Han, K., Embury, J.D., Petrovic, J.J., and Weatherly, G.C., Acta Mater. 46, 4691 (1998).CrossRefGoogle Scholar
36.Taylor, G.F., Phys. Rev. 23, 655 (1924).CrossRefGoogle Scholar
37.Venables, J.A., in The Plastic Deformation of Metals, edited by Honeycombe, R.W.K. (Edward Arnold, New York, 1071), p. 212.Google Scholar
38.Hartherly, M. and Malin, S., Metals Technol. August, 308 (1979).CrossRefGoogle Scholar
39.Turley, D., J. Inst. Met. 97, 237 (1969).Google Scholar
40.Gallagher, P.C.J., Metall. Trans. 1, 2429 (1970).CrossRefGoogle Scholar
41.Hong, S.I. and Laird, C., Acta Metall. Mater. 38, 1581 (1990).CrossRefGoogle Scholar
42.Weertman, J., J. Appl. Phys. 26, 1213 (1955).CrossRefGoogle Scholar
43.Courtney, T.H., Mechanical Behavior of Materials, International ed. (McGraw-Hill, New York, 1990), p. 170.Google Scholar
44.Grunberger, W., Heilmaier, M., and Schiltz, L., Z. Metallkd. 93, 58 (2002).CrossRefGoogle Scholar
45.Hong, S.I. and Hill, M.A., Mater. Sci. Eng. A 281, 189 (2000).CrossRefGoogle Scholar
46.Hong, S.I., Scripta Mater. 39, 1685 (1998).CrossRefGoogle Scholar
47.Suzuki, H. and Barret, C.S., in Structure of Metals, 3rd ed., edited by Barret, C. and Massalski, T.B. (Pergamon, Oxford, U.K., 1980), p. 408.Google Scholar
48.English, A.T. and Chin, G., Acta Metall. 13, 1013 (1965).CrossRefGoogle Scholar
49.Honeycombe, R.W.K., The Plastic Deformation of Metals (Edward Arnold, New York, 1971), p. 325.Google Scholar
50.Barret, C. and Massalski, T.B., Structure of Metals, 3rd ed. (Pergamon, Oxford, U.K., 1980), p. 545.Google Scholar