Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-20T07:56:56.076Z Has data issue: false hasContentIssue false

Hydrogen reduction mechanisms of ilmenite between 823 and 1353 K

Published online by Cambridge University Press:  08 February 2011

R.A. Briggs
Affiliation:
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
A. Sacco Jr.
Affiliation:
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
Get access

Abstract

In situ gravimetric measurements and microscopic examinations were used to determine the mechanisms of oxygen removal from synthetic ilmenite disks between 823 and 1353 K. Under a hydrogen atmosphere, iron was observed to form a layer of low porosity on the surface of samples early in the reduction. This created diffusion limitations for hydrogen to the reaction front and for the escape of water vapor. A shrinking core reduction model, modified to include the growth of this iron film, was capable of predicting the conversion-time relationships of ilmenite samples. An activation energy of 43.2 ± 2.6 kcal/gmole was determined to be representative of reaction control over the temperature range 823–1023 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Report of the 90-Day Study on Human Exploration of the Moon and Mars, report submitted to the National Space Council, National Aeronautics and Space Administration, November 1989.Google Scholar
2Temple, A. K., Econ. Geol. 61, 695 (1966).CrossRefGoogle Scholar
3El-Guindy, M. I. and Davenport, W. G., Metall. Trans. 1, 1729 (1970).CrossRefGoogle Scholar
4Cuke, N. H. and Wagner, G. E., Proc. of the Electric Furnace Conf., Can. Inst. of Min. and Metal. 20, 76 (1962).Google Scholar
5Walsh, R. H., Hockin, H. W., Brandt, D. R., Dietz, P. L., and Girardot, P. R., Trans. Met. Soc. 218, 994 (1960).Google Scholar
6Shadman, F. and Zhao, Y., Report to the NASA/University of Arizona Space Research Center, June 1989.Google Scholar
7Hammond, P. A. and Taylor, L. A., Earth and Plan. Sci. Lett. 61, 143 (1982).CrossRefGoogle Scholar
8Grey, I. E., Jones, D. G., and Reid, A. F., Trans. Inst. Min. Metall. 82, c141 (1973).Google Scholar
9Jones, D. G., Trans. Inst. Min. Metall. 82, 186 (1973).Google Scholar
10Grey, I. E. and Reid, A. F., Trans. Inst. Min. Metall. 83, c39 (1974).Google Scholar
11Grey, I. E., Reid, A. F., and Jones, D. G., Trans. Inst. Min. Metall. 83, 105 (1974).Google Scholar
12Jones, D. G., J. Appl. Chem. Biotechnol. 25, 561 (1975).CrossRefGoogle Scholar
13Jones, D. G. and Stephans, J. F., J. of Micros. 99, 237 (1973).CrossRefGoogle Scholar
14Volk, W. and Stotler, H., J. of Metals 22, 50 (1970).Google Scholar
15Hussein, M. K. and El-Tawil, S. Z., Indian J. Tech. 5, 97 (1966).Google Scholar
16Ostberg, G., Jernkont. Ann. 144, 46 (1960).Google Scholar
17Fihey, J. L., Ajersch, F., and Dancy, E. A., Can. Met. Quart. 18, 419 (1979).Google Scholar
18Bardi, G., Gozzi, D., and Stranges, S., Mat. Chem. and Phys. 17, 325 (1987).Google Scholar
19Yamaguchi, A. and Moriyama, J., Mem. Fac. Engng., Kyoto Univ. 28, 389 (1966).Google Scholar
20Donnelly, R. P., Brennan, L. J., and McMullen, W., Aust. Mining 62, 58 (1970).Google Scholar
21Gibson, M. and Knudsen, C., Proceedings from the Second Conference on Lunar Bases, NASA-JSC, Houston, TX (April 1988).Google Scholar
22Hussein, M. K., Kammel, R., and Winterhager, H., Indian J. Tech. 5, 369 (1967).Google Scholar
23Briggs, R. A. and Williams, R. J., Abstracts from the Lunar and Planetary Institute's Summer Intern Conference II, Lunar and Planetary Institute, Houston, TX (1986).Google Scholar
24Briggs, R. A. and Sacco, A., Proceedings from the Second Conference on Lunar Bases, NASA-JSC, Houston, TX (April 1988).Google Scholar
25Jones, D. G., Inst. Min. and Met. C, 1 (1974).Google Scholar
26Williams, R. J. and Mullins, O., NASA Tech. Mem. 5824, NASA-JSC (1981).Google Scholar
27Szekely, J., Evans, J., and Sohn, H., Gas-Solid Reactions (Academic Press, New York, 1976).Google Scholar
28Rao, D. B. and Rigaud, M., High Temp. Sci. 6, 323 (1974).Google Scholar
29Skoog, D. M. and West, D. M., Analytical Chemistry, 3rd ed. (Holt, Rinehart and Winston, New York, 1979).Google Scholar
30CRC Handbook of Physical Properties of Rocks, edited by Carmichael, R. S. (CRC Press, Boca Raton, 1982), Vol. 2.Google Scholar
31Kurihara, J., Taguchi, M., and Sinagawa, R., Shigen Chigaku Kenkyu Shisetsu Hohoku 53, 87 (1988).Google Scholar
32McKewan, W. M., Trans. Met. Soc. 22, 140 (1961).Google Scholar
33Quets, J. M., Wadsworth, M. E., and Lewis, J. R., Trans. Met. Soc. 218, 545 (1960).Google Scholar
34Lu, W. K. and Bitsianes, G., Can. Met. Quart. 7, 3 (1968).CrossRefGoogle Scholar
35Walker, R. D. and Carpenter, D. L., J. Iron and Steel Inst. 208, 67 (1970).Google Scholar
36Kawasaki, E., Sanscrante, J., and Walsh, T. J., AIChE J. 8, 48 (1962).CrossRefGoogle Scholar
37Edstrom, J. O., Jernkont. Ann. 142, 401 (1958).Google Scholar
38Lien, H. O., El-Mehairy, A. E., and Ross, H. U., J. Iron and Steel Inst. 209, 541 (1971).Google Scholar
39Landler, P. F. J. and Komarek, K. L., Trans. Met. Soc. 236, 138 (1966).Google Scholar
40Kohl, H. K. and Engell, H. J., Arch. Eisenhiitten. 34, 411 (1963).Google Scholar
41Huebler, J., The Reduction of Iron Oxides, edited by Bogdandy, L. von and Engell, H. (Springer-Verlag, Berlin and New York, 1971), Chap. 3.Google Scholar
42Levenspiel, O., Chemical Reaction Engineering, 2nd ed. (John Wiley and Sons, New York, 1962).Google Scholar
43Shomate, C. H., Naylor, B. F., and Boericke, F. S., U. S. Bureau of Mines Rpt #3864 (1946), 19 pp.Google Scholar
44Yoshida, F., Ramaswami, D., and Hougen, O. A., AIChE J. 8, 5 (1962).Google Scholar
45Agosto, W., Proceedings from the 6th Princeton/Space Studies Institute Conference, Univelt, San Diego, CA (1983).Google Scholar