Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-klmjj Total loading time: 0.333 Render date: 2021-09-17T08:16:07.327Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Glass-forming ability and differences in the crystallization behavior of ribbons and rods of Cu36Zr48Al8Ag8 bulk glass-forming alloy

Published online by Cambridge University Press:  31 January 2011

Dmitri V. Louzguine-Luzgin*
Affiliation:
WPI Advanced Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan; and Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
C. Suryanarayana*
Affiliation:
Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
Akihisa Inoue
Affiliation:
WPI Advanced Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan; and Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
*Corresponding
a) Address all correspondence to this author. e-mail: dml@wpi-aimr.tohoku.ac.jp
b) Present address: Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450.
Get access

Abstract

The crystallization behavior of melt-spun ribbons and bulk samples of the Cu36Zr48Al8Ag8 glassy alloy on heating is presented here. The crystallization kinetics and structural changes in the Cu36Zr48Al8Ag8 glassy alloy were studied using x-ray diffraction, transmission electron microscopy, differential scanning, and isothermal calorimetry methods. A clear comparison is made of the differences in the crystallization kinetics of the melt-spun ribbons and the copper-mold-cast bulk rod samples. It was suggested that the kinetics of crystallization in the rod sample, at any given temperature, are somewhat different than in the ribbon samples, probably because of size and free volume effects. Differences in the crystallization behavior of this alloy with other Cu-Zr-Al-Ag alloys have also been discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Inoue, A.: High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans., JIM 36, 866 (1995).CrossRefGoogle Scholar
2.Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 (1999).CrossRefGoogle Scholar
3.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
4.Xu, D.H., Duan, G., and Johnson, W.L.: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 (2004).CrossRefGoogle ScholarPubMed
5.Turnbull, D. and Cohen, M.H.: Free-volume model of the amorphous phase: Glass transition. J. Chem. Phys. 34, 120 (1961).CrossRefGoogle Scholar
6.Lu, Z.P. and Liu, C.T.: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 (2002).CrossRefGoogle Scholar
7.Louzguine-Luzgin, D.V. and Inoue, A.: Nano-devitrification of glassy alloys. J. Nanosci. Nanotechnol. 5, 999 (2005).CrossRefGoogle ScholarPubMed
8.Inoue, A. and Zhang, W.: Formation, thermal stability and mechanical properties of Cu-Zr and Cu-Hf binary glassy alloy rods. Mater. Trans. 45, 584 (2004).CrossRefGoogle Scholar
9.Xu, D., Lohwongwatana, B., Duan, G., Johnson, W.L., and Garland, C.: Bulk metallic glass formation in binary Cu-rich alloy series – Cu100−xZrx (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 (2004).CrossRefGoogle Scholar
10.Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K., and Ma, E.: Bulk metallic glass formation in the binary Cu–Zr system. Appl. Phys. Lett. 84, 4029 (2004).CrossRefGoogle Scholar
11.Inoue, A., Zhang, W., and Saida, J.: Synthesis and fundamental properties of Cu-Based bulk glassy alloys in binary and multi-component systems. Mater. Trans. 45, 1153 (2004).CrossRefGoogle Scholar
12.Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R., and Greer, A.L.: Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 (2005).CrossRefGoogle Scholar
13.Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 2645 (2001).CrossRefGoogle Scholar
14.Inoue, A. and Zhang, W.: Formation, thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys. Mater. Trans. 43, 2921 (2002).CrossRefGoogle Scholar
15.Zhang, W. and Inoue, A.: Formation and mechanical strength of new Cu-based bulk glassy alloys with large supercooled liquid region. Mater. Trans. 45, 1210 (2004).CrossRefGoogle Scholar
16.Inoue, A., Negishi, T., Kimura, H.M., Zhang, T., and Yavari, A.R.: High packing density of Zr- and Pd-based bulk amorphous alloys. Mater. Trans., JIM 39, 318 (1998).CrossRefGoogle Scholar
17.Busch, R., Bakke, E., and Johnson, W.L.: Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy. Acta Mater. 46, 4725 (1998).CrossRefGoogle Scholar
18.Greer, A.L.: Metallic glasses. Science 267, 1947 (1995).CrossRefGoogle ScholarPubMed
19.Zhang, Q., Zhang, W., and Inoue, A.: Preparation of Cu36Zr48Ag8Al8 bulk metallic glass with a diameter of 25 mm by copper mold casting. Mater. Trans. 48, 629 (2007).CrossRefGoogle Scholar
20.Altounian, Z., Guo-hua, T., and Ström-Olsen, J.O.: Crystallization characteristics of Cu-Zr metallic glasses from Cu70Zr30 to Cu25Zr75. J. Appl. Phys. 53, 4755 (1982).CrossRefGoogle Scholar
21.Mattern, N., Schops, A., Kuhn, U., Acker, J., Khvostikova, O., and Eckert, J.: Structural behavior of CuxZr100−x metallic glass (x = 35—70). J. Non-Cryst. Solids 354, 1054 (2008).CrossRefGoogle Scholar
22.Nagahama, D., Ohkubo, T., Mukai, T., and Hono, K.: Characterization of nanocrystal dispersed Cu60Zr30Ti10 metallic glass. Mater. Trans. 46, 1264 (2005).CrossRefGoogle Scholar
23.Jiang, J.Z., Saida, J., Kato, H., Ohsuna, T., and Inoue, A.: Is Cu60Ti10Zr30 a bulk glass-forming alloy? Appl. Phys. Lett. 82, 4041 (2003).CrossRefGoogle Scholar
24.Louzguine, D.V. and Inoue, A.: Nanocrystallization of Cu-(Zr or Hf)-Ti metallic glasses. J. Mater. Res. 17, 2112 (2002).CrossRefGoogle Scholar
25.Louzguine, D.V. and Inoue, A.: Evaluation of the thermal stability of a Cu60Hf25Ti15 metallic glass. Appl. Phys. Lett. 81, 2561 (2002).CrossRefGoogle Scholar
26.Kasai, M., Saida, J., Matsushita, M., Osuna, T., Matsubara, E., and Inoue, A.: Structure and crystallization of rapidly quenched Cu-(Zr or Hf)-Ti alloys containing nanocrystalline particles. J. Phys.: Condens. Matter 14, 13867 (2002).Google Scholar
27.Jiang, J.Z., Yang, B., Saksl, K., Franz, H., and Pryds, N.: Crystallization of Cu60Ti20Zr20 metallic glass with and without pressure. J. Mater. Res. 18, 895 (2003).CrossRefGoogle Scholar
28.Fan, G.J., Fu, L.F., Qiao, D.C., Choo, H., Liaw, P.K., Browning, N.D., and Löffler, J.F.: Effect of microalloying on the glass-forming ability of Cu60Zr30Ti10 bulk metallic glass. J. Non-Cryst. Solids 353, 4218 (2007).CrossRefGoogle Scholar
29.Louzguine, D.V. and Inoue, A.: Influence of Ni and Co additions on supercooled liquid region, devitrification behaviour and mechanical properties of Cu-Zr-Ti bulk metallic glass. J. Metastable & Nanocrystalline Mater. 15–16, 31 (2003).CrossRefGoogle Scholar
30.Yokoyama, Y., Inoue, H., Fukaura, K., and Inoue, A.: Relationship between the liquidus surface and structures of Zr-Cu-Al bulk amorphous alloys. Mater. Trans. 43, 575 (2002).CrossRefGoogle Scholar
31.Ma, D., Tan, H., Wang, D., Li, Y., and Ma, E.: Strategy for pinpointing the best glass-forming alloys. Appl. Phys. Lett. 86, 191906 (2005).CrossRefGoogle Scholar
32.Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-Hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).CrossRefGoogle ScholarPubMed
33.Das, J., Pauly, S., Duhamel, C., Wei, B.C., and Eckert, J.: Microstructure and mechanical properties of slowly cooled Cu47.5Zr47.5Al5. J. Mater. Res. 22, 326 (2007).CrossRefGoogle Scholar
34.Pauly, S., Das, J., Duhamel, C., and Eckert, J.: Martensite formation in a ductile Cu47.5Zr47.5Al5 bulk metallic glass composite. Adv. Eng. Mater. 9, 487 (2007).CrossRefGoogle Scholar
35.Zhang, W. and Inoue, A.: High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu-Zr-Ag ternary system. J. Mater. Res. 21, 234 (2006).CrossRefGoogle Scholar
36.Duan, G., De Blauwe, K., Lind, M.L., Schramm, J.P., and Johnson, W.L.: Compositional dependence of thermal, elastic, and mechanical properties in Cu–Zr–Ag bulk metallic glasses. Scr. Mater. 58, 159 (2008).CrossRefGoogle Scholar
37.Jia, F., Zhang, W., and Inoue, A.: Effects of additional Hf on the thermal stability and mechanical properties of Cu-Zr-Ag bulk glassy alloys. Mater. Trans. 47, 1922 (2006).CrossRefGoogle Scholar
38.Dai, C-L., Guo, H., Shen, Y., Li, Y., Ma, E., and Xu, J.: A new centimeter-diameter Cu-based bulk metallic glass. Scr. Mater. 54, 1403 (2006).CrossRefGoogle Scholar
39.Louzguine, D.V. and Inoue, A.: Nanoparticles with icosahedral symmetry in Cu-based bulk glass former induced by Pd addition. Scr. Mater. 48, 1325 (2003).CrossRefGoogle Scholar
40.Louzguine, D.V. and Inoue, A.: Gold as an alloying element promoting formation of a nanoicosahedral phase in a Cu-based alloy. J. Alloys Compd. 361, 153 (2003).CrossRefGoogle Scholar
41.Qin, F.X., Zhang, H.F., Ding, B.Z., and Hu, Z.Q.: Nanocrystallization kinetics of Ni-based bulk amorphous alloy. Intermetallics 12, 1197 (2004).CrossRefGoogle Scholar
42.Xie, G., Zhang, Q., Louzguine, D.V., Zhang, W., and Inoue, A.: Stability of nanocrystallites dispersed in Cu50Zr45Ti5 metallic glass under electron irradiation. J. Nanosci. Nanotechnol. 7, 3286 (2007).CrossRefGoogle ScholarPubMed
43.Powder Diffraction Data Database, Vol. 43 (The International Center for Diffraction Database, 2003), p. 1142.Google Scholar
44.Xie, G., Zhang, Q., Louzguine-Luzgin, D.V., Zhang, W., and Inoue, A.: Nanocrystallization of Cu50Zr45Ti5 metallic glass induced by electron irradiation. Mater. Trans. 47, 1930 (2006).CrossRefGoogle Scholar
45.Tian, N., Ohnuma, M., Ohkubo, T., and Hono, K.: Primary crystallization of an Al88Gd6Er2Ni4 metallic glass. Mater. Trans. 46, 2880 (2005).CrossRefGoogle Scholar
46.Kelton, K.F. and Spaepen, F.: A study of the devitrification of Pd82Si18 over a wide temperature range. Acta Metall. 33, 455 (1985).CrossRefGoogle Scholar
47.Li, Z., Shen, H., and He, Y.: Surface crystallization of metallic glass Fe71Ni3Cr4Si8B14. Phys. Status Solidi A 141, 135 (2006).CrossRefGoogle Scholar
48.Papageorgiou, D.G. and Evangelakis, G.A.: Adlayer deposition induced surface crystallization of Cu46Zr54 bulk metallic glass. Surf. Sci. 602, 1486 (2008).CrossRefGoogle Scholar
49.Grabia, A., Oleszak, D., Kopcewicz, M., and Latuch, J.: Crystallization behaviour of the Fe60Co10Ni10Zr7B13 metallic glass. Mater. Sci. Eng. 449–451, 552 (2007).CrossRefGoogle Scholar
50.Kelton, K.F.: Time-dependent nucleation in partitioning transformations. Acta Mater. 48, 1967 (2000).CrossRefGoogle Scholar
51.Inoue, A. and Zhang, T.: Fabrication of bulk glassy Zr55Al10-Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Mater. Trans., JIM 37, 185 (1996).CrossRefGoogle Scholar
52.Révész, Á., Concustell, A., Varga, L.K., Suriñach, S., and Baro, M.D.: Influence of the wheel speed on the thermal behaviour of Cu60Zr20Ti20 alloys. Mater. Sci. Eng., A 375–377, 776 (2004).CrossRefGoogle Scholar
53.Perepezko, J.H., Hebert, R.J., and Wilde, G.: Synthesis of nano-structures from amorphous and crystalline phases. Mater. Sci. Eng., A 375–377, 171 (2004).CrossRefGoogle Scholar
54.Dinda, G.P., Rösner, H., and Wilde, G.: Cold-rolling induced amor-phization in Cu-Zr, Cu-Ti-Zr and Cu-Ti-Zr-Ni multilayers. J. Non-Cryst. Solids 353, 3777 (2007).CrossRefGoogle Scholar
55.Illekova, E., Jergel, M., Duhaj, P., and Inoue, A.: The relation between the bulk and ribbon Zr55Ni25Al20 metallic glasses. Mater. Sci. Eng., A 226–228, 388 (1997).CrossRefGoogle Scholar
56.Louzguine-Luzgin, D.V., Saito, T., Saida, J., and Inoue, A.: Influence of cooling rate on the structure and properties of a Cu–Zr–Ti–Ag glassy alloy. J. Mater. Res. 23, 515 (2008).CrossRefGoogle Scholar
57.Louzguine-Luzgin, D.V., Xie, G., Zhang, W., and Inoue, A.: Influence of Al and Ag on the devitrification behavior of a Cu-Zr glassy alloy. Mater. Trans. 48, 2128 (2007).CrossRefGoogle Scholar
58.Xia, L., Li, W.H., Fang, S.S., Wei, B.C., and Dong, Y.D.: Binary Ni-Nb bulk metallic glasses. J. Appl. Phys. 99, 026103 (2006).CrossRefGoogle Scholar
59.Tan, H., Zhang, Y., Ma, D., Feng, Y.P., and Li, Y.: Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La-Al-(Cu, Ni) pseudo ternary system. Acta Mater. 51, 4551 (2003).CrossRefGoogle Scholar
60.Xia, L., Ding, D., Shan, S.T., and Dong, Y.D.: The glass forming ability of Cu-rich Cu–Hf binary alloys. J. Phys.: Condens. Matter 18, 3543 (2006).Google Scholar
61.Wang, W.H.: Roles of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci. 52, 540 (2007).CrossRefGoogle Scholar
62.Louzguine-Luzgin, D.V., Setyawan, A.D., Kato, H., and Inoue, A.: Thermal conductivity of an alloy in relation to the observed cooling rate and glass-forming ability. Philos. Mag. 87, 1845 (2007).CrossRefGoogle Scholar
63.Louzguine-Luzgin, D.V., Xie, G., Zhang, W., and Inoue, A.: Devitrification behavior and glass-forming ability of Cu-Zr-Ag alloys. Mater. Sci. Eng., A 465, 146 (2007).CrossRefGoogle Scholar
64.Oh, J.C., Ohkubo, T., Kim, Y.C., Fleury, E., and Hono, K.: Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scr. Mater. 53, 165 (2005).CrossRefGoogle Scholar
65.Park, S.O., Lee, J.C., Cha, P.R., Fleury, E., Ahn, J.P., and Kim, Y.C.: The effect of crystallization behavior on the plasticity of Cu43Zr43Al7Ag7 bulk metallic glass. J. Korean Phys. Soc. 49, 624 (2006).Google Scholar
66.Kündig, A.A., Ohnuma, M., Ohkubo, T., Abe, T., and Hono, K.: Glass formation and phase separation in the Ag-Cu-Zr system. Scr. Mater. 55, 449 (2006).CrossRefGoogle Scholar
67.Martin, I., Ohkubo, T., Ohnuma, M., and Hono, K.: Nanocrystalli-zation of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass. Acta Mater. 52, 4427 (2006).CrossRefGoogle Scholar
68.Waseda, Y., Chen, H.S., Jacob, K.T., and Shibata, H.: On the glass forming ability of liquid alloys. Sci. Technol. Adv. Mater. 9, 023003 (2008).CrossRefGoogle ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Glass-forming ability and differences in the crystallization behavior of ribbons and rods of Cu36Zr48Al8Ag8 bulk glass-forming alloy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Glass-forming ability and differences in the crystallization behavior of ribbons and rods of Cu36Zr48Al8Ag8 bulk glass-forming alloy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Glass-forming ability and differences in the crystallization behavior of ribbons and rods of Cu36Zr48Al8Ag8 bulk glass-forming alloy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *