Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-ttsf8 Total loading time: 0.21 Render date: 2021-08-05T11:07:12.714Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Formation and phase transition of VO2 precipitates embedded in sapphire

Published online by Cambridge University Press:  31 January 2011

Laurence A. Gea
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
J. D. Budai
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
L. A. Boatner
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

Crystallographically coherent precipitates of vanadium dioxide (VO2) have been formed in the near-surface region of single crystals of sapphire (Al2O3) using a combination of ion implantation and thermal treatments. As in the case of either bulk VO2 single crystals or thin films of VO2, the thermally induced semiconductor-to-metal phase transition of the embedded VO2 precipitates is accompanied by a large hysteretic change in the infrared optical transmission. The VO2 precipitate transition temperature (Tc = 72 to 85 °C) is higher than that of bulk VO2 (Tc = 68 °C) and is sensitive to the implantation conditions. The present results show that the damage resulting from the coimplantation of vanadium and oxygen into an Al2O3 host lattice dictates the final microstructure of the VO2 precipitates and, consequently, affects the transition temperature, as well as the optical quality of the VO2/Al2O3 surface-nanocomposite precipitate system.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Case, F. C., J. Vac. Sci. Technol. A2, 1509 (1984).CrossRefGoogle Scholar
2.Marezio, M., McWhan, D. B., Remeika, J. P., and Dernier, P. D., Phys. Rev. B 5, 2541 (1972).CrossRefGoogle Scholar
3.Partlow, D. P., Gurkovich, S. R., Radford, K. C., and Denes, L. J., J. Appl. Phys. 70, 443 (1991).CrossRefGoogle Scholar
4.De Natale, J. F., Hood, P. J., and Harker, A. B., J. Appl. Phys. 66, 5844 (1989).CrossRefGoogle Scholar
5.Roach, W. R., Appl. Phys. Lett. 19, 453 (1971).CrossRefGoogle Scholar
6.Smith, A. W., Appl. Phys. Lett. 23, 437 (1973).CrossRefGoogle Scholar
7.Lee, C. E., Atkins, R. A., Gibler, W. N., and Taylor, H. F., Appl. Opt. 28, 4511 (1989).CrossRefGoogle Scholar
8.Smith, A. W., Appl. Phys. Lett. 23, 437 (1973).CrossRefGoogle Scholar
9.Roach, W. R., Appl. Phys. Lett. 19, 453 (1971).CrossRefGoogle Scholar
10.Gea, L. A., Boatner, L. A., Rankin, J., and Budai, J. D., in Beam-Solid Interactions for Materials Synthesis and Characterization, edited by Luzzi, D. E., Heinz, T. F., Iwaki, M., and Jacobson, D. C. (Mater. Res. Soc. Symp. Proc. 345, Pittsburgh, PA, 1995), p. 269.Google Scholar
11.Gea, L. A. and Boatner, L. A., Appl. Phys. Lett. 68, 3081 (1996).CrossRefGoogle Scholar
12.Gea, L. A., Boatner, L. A., Evans, H. M., and Zuhr, R., Nucl. Instrum. Meth. Phys. Res. B127/128, 553 (1997).CrossRefGoogle Scholar
13.Morin, F. J., Phys. Rev. Lett. 3, 34 (1959).CrossRefGoogle Scholar
14.Goodenough, J. B., J. Solid State Chem. 3, 490 (1971).CrossRefGoogle Scholar
15.White, C. W., McHargue, C. J., Sklad, P. S., Boatner, L. A., and Farlow, G. C., Mater. Sci. Rep. 4, 41146 (1989).CrossRefGoogle Scholar
16.Budai, J. D., White, C. W., Withrow, S. P., Chisholm, M. F., Zhu, J. G., and Zuhr, R. A., Nature 390, 384 (1997).CrossRefGoogle Scholar
17.White, C. W., Budai, J. D., Zhu, J.G., Withrow, S. P., Zuhr, R. A., Hembree, D.M., Henderson, D.O., Ueda, A., Tung, Y.S., and Mu, R.H., J. Appl. Phys. 79, 1876 (1996).CrossRefGoogle Scholar
18.Chang, H. L. M., You, H., Guo, J., and Lam, D. J., Appl. Surf. Sci. 48/49, 12 (1991).CrossRefGoogle Scholar
19.JCPDS, International Center for Diffraction Data, 1601 Park Lane, Swarthmore, PA.Google Scholar
20.Choi, H. S., Ahn, J. S., Jung, J. H., Noh, T. W., and Kim, D. H., Phys. Rev. B 54, 4621 (1996).CrossRefGoogle Scholar
21.Phillips, D. S., Heuer, A. H., and Mitchell, T. E., Philos. Mag. A 42, 385 (1980).CrossRefGoogle Scholar
22.Naramoto, H., McHargue, C. J., White, C. W., Williams, J. M., Holland, O. W., Abraham, M. M., and Appleton, B. R., Nucl. Instrum. Meth. 209/210, 1159 (1983).CrossRefGoogle Scholar
23.Gea, L. A., Boatner, L. A., Budai, J. D., and Zuhr, R. A., in Ion-Solid Interactions for Materials Modification and Processing, edited by Poker, D. B., Ila, D., Cheng, Y-T., Harriott, L. R., and Sigmon, T. W. (Mater. Res. Soc. Symp. Proc. 396, Pittsburgh, PA, 1995), p. 215.Google Scholar
24.Case, F. C., Appl. Opt. 30, 4119 (1991).CrossRefGoogle Scholar
25.Griffiths, C. H. and Eastwood, H. K., J. Appl. Phys. 45, 2201 (1974).CrossRefGoogle Scholar
26.Phillips, D. S., Heuer, A. H., and Mitchell, T. E., Philos. Mag. A 42, 405 (1980).CrossRefGoogle Scholar
27.Phillips, D. S., Heuer, A. H., and Mitchell, T. E., Philos. Mag. A 42, 417 (1980).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Formation and phase transition of VO2 precipitates embedded in sapphire
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Formation and phase transition of VO2 precipitates embedded in sapphire
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Formation and phase transition of VO2 precipitates embedded in sapphire
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *