Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-12T10:20:30.107Z Has data issue: false hasContentIssue false

EPR and optical properties of KY(WO4)2:Gd3+ powders

Published online by Cambridge University Press:  12 November 2012

Grzegorz Leniec*
Affiliation:
West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, Institute of Physics, 70-310 Szczecin, Poland
Lucyna Macalik
Affiliation:
Institute of Low Temperature and Structure Research, PAS, 50-950 Wrocław, Poland
Sławomir Maksymilian Kaczmarek
Affiliation:
West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, Institute of Physics, 70-310 Szczecin, Poland
Tomasz Skibiński
Affiliation:
West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, Institute of Physics, 70-310 Szczecin, Poland
Jerzy Hanuza
Affiliation:
Institute of Low Temperature and Structure Research, PAS, 50-950 Wrocław, Poland
*
a)Address all correspondence to this author. e-mail: gleniec@zut.edu.pl
Get access

Abstract

Comparisons of structural, optical, and magnetic properties between KY(WO4)2 (KYW) powders doped with Gd3+ from 0.5 up to 100 mol% and KGd(WO4)2and KYW single crystals have been made. For this purpose, x-ray diffraction (XRD), infrared (IR), Raman, and electron paramagnetic resonance (EPR) spectra were collected. The XRD studies have verified the quality of the synthesis of compounds and have shown the differences in the positions of the diffraction peaks due to the change in concentration of gadolinium ions. Raman and IR spectra confirmed that the phases are isostructural. The optimization of the spin Hamiltonian parameters and EPR data simulation was achieved by using the electron paramagnetic resonance and nuclear magnetic resonance (EPR-NMR) program. Changes in kind of magnetic interactions were found and analyzed from the point of view of their dependence of the compound form (powder, single crystal), temperature, and gadolinium ion concentration. The investigated compounds revealed complex interactions between gadolinium ions both in a type and a strength.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kumaran, A.S., Babu, S.M., Ganesamoorthy, S., Bhaumik, I., and Karnal, A.K.: Crystal growth and characterization of KY(WO4)2 and KGd(WO4)2 for laser applications. J. Cryst. Growth 292, 368 (2006).CrossRefGoogle Scholar
Macalik, L., Hanuza, J., and Kaminskii, A.A.: Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals. J. Mol. Struct. 555, 289 (2000).CrossRefGoogle Scholar
Klevtsov, P.V., Kozeeva, L.P., and Pavlyuk, A.A.: Polymorphism and crystallization of the potassium – rare earth molybdates KLn(MoO4)2 (Ln=La, Ce, Pr and Nd). Kristallografiya 20, 1216 (1975) [in Russian].Google Scholar
Pujol, C., Aguiló, M., Díaz, F., and Zaldo, C.: Growth and characterisation of monoclinic KGd1−xREx(WO4)2 single crystals. Opt. Mater. 13, 33 (1999).CrossRefGoogle Scholar
Pujol, M.C., Sole, R., Massons, J., Gavalda, J., Solans, X., Zaldo, C., Diaz, F., and Aguilo, M.: Structural study of monoclinic KGd(WO4)2 and effects of lanthanide substitution. J. Appl. Cryst. 34, 1 (2001).CrossRefGoogle Scholar
Perets, S., Tseitlin, M., Shneck, R.Z., Mogilyanski, D., Kimmel, G., and Burshtein, Z.: Sodium gadolinium tungstate NaGd(WO4)2: Growth, crystallography, and some physical properties. J. Cryst. Growth 305, 257 (2007).CrossRefGoogle Scholar
Macalik, L., Hanuza, J., Macalik, B., Ryba-Romanowski, W., Gołąb, S., and Pietraszko, A.: Optical spectroscopy of Dy3+ ions doped in KY(WO4)2 crystals. J. Lumin. 79, 9 (1998).CrossRefGoogle Scholar
Fuks, H., Kaczmarek, S.M., Leniec, G., Macalik, L., Macalik, B., and Hanuza, J.: EPR and vibrational studies of some tungstates and molybdates single crystals. Opt. Mater. 32, 1560 (2010).CrossRefGoogle Scholar
Borowiec, M.T., Zayarnyuk, T., Pujol, M.C., Aguiló, M., Díaz, F., Zubov, E.E., Prokhorov, A.D., Berkowski, M., Domuchowski, W., Wisniewski, A., Puzniak, R., Pietosa, J., Dyakonov, V.P., Baranski, M., and Szymczak, H.: Magnetic properties of KRE(WO4)2 (RE=Gd, Yb, Tm) single crystals. Physica B 405, 4886 (2010).CrossRefGoogle Scholar
Koster, A.S., Kools, F.X.N.M., and Rieck, G.D.: The crystal structure of potassium tungstate, K2WO4. Acta Crystallogr. B 25, 1704 (1969).CrossRefGoogle Scholar
Borisov, S.V. and Klevtsova, R.F.: Crystal structure of KY(WO4)2. Kristallografiya 13, 17 (1968) [in Russian].Google Scholar
Mombourquette, M.J., Weil, J.A., and McGavi, D.G.: EPR-NMR User’s Manual (Department of Chemistry, University of Saskatchewan, Saskatoon, Canada, 1999).Google Scholar
Viscakas, J., Mochalov, I., Mikhailov, A., Klevtsova, R., and Liubimov, A.: Crystal structure and Raman scattering in KGd(WO4)2 crystals. Liet. Fiz. Rinkinys 28, 224 (1988) [in Russian].Google Scholar
Pujol, M.C., Rico, M., Zaldo, C., Sole, R., Nikolov, V., Solans, X., Aguilo, M., and Diaz, F.: Crystalline structure and optical spectroscopy of Er(3+)-doped KGd(WO4)2 single crystals. Appl. Phys. B: Lasers Opt. 68, 187 (1999).CrossRefGoogle Scholar
Macalik, L., Hanuza, J., and Kaminskii, A.A.: Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis. J. Raman Spectrosc. 33, 92 (2002).CrossRefGoogle Scholar
Shannon, R.D. and Prewitt, C.T.: Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25, 925 (1969).CrossRefGoogle Scholar
Fuks, H., Kaczmarek, S.M., Macalik, L., and Hanuza, J.: EPR properties of KY(WO4)2 single crystals weakly doped with Er, Yb and Nd. Opt. Mater. 34, 2086 (2012).CrossRefGoogle Scholar
Weil, J.A. and Bolton, J.R.: Electron Paramagnetic Resonance. Elementary Theory and Practical Applications, 2nd ed. (John Wiley & Sons, Inc., Hoboken, NJ, 2007), p. 158.Google Scholar
Cherney, N.V., Nadolinny, V.A., and Pavlyuk, A.A.: ESR investigation of Gd3+ ion introduction into the structure of simple and double tungstates. Appl. Magn. Reson. 33, 45 (2008).CrossRefGoogle Scholar
Gubin, S.P.: Magnetic Nanoparticles (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009).CrossRefGoogle Scholar
Kliava, J., Edelman, I., Potseluyko, A., Petrakovskaja, E., Berger, R., Bruckental, I., Yeshurun, Y., Malakhovskii, A., and Zarubina, T.: EPR and magnetic properties of Gd3+ in oxide glasses. J. Magn. Magn. Mater. 272276, e1647 (2004).CrossRefGoogle Scholar
Guskos, N., Likodimos, V., Glenis, S., Zolnierkiewicz, G., Typek, J., Szymczak, R., and Blonska-Tabero, A.: Magnetic frustration in the site ordered Mg3Fe4(VO4)6 vanadate. J. Appl. Phys. 101, 103922 (2007).CrossRefGoogle Scholar
Bencini, A. and Gatteschi, D.: Electron Paramagnetic Resonance of Exchange Coupled Systems (Springer-Verlag, Berlin, 1990).CrossRefGoogle Scholar