Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-prt4h Total loading time: 0.216 Render date: 2021-10-16T10:22:26.520Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Enhancement of thermal conductivity in ceramics obtained from a combustion synthesized AlN powder by microwave sintering and reheating

Published online by Cambridge University Press:  31 January 2011

Shyan-Lung Chung*
Affiliation:
Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China
Cheng-Yu Hsieh
Affiliation:
Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China
Chih-Wei Chang
Affiliation:
Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China
*
a)Address all correspondence to this author. e-mail: slchung@mail.ncku.edu.tw
Get access

Abstract

A combustion-synthesized AlN powder was investigated for use as a starting material in obtaining a high thermal conductivity AlN by microwave sintering followed by microwave reheating under a reducing atmosphere. Microwave sintering was found to proceed very quickly so that a density of 99.5% of theoretical with a thermal conductivity of 165 W/mK was achieved after sintering at 1900 °C for 5 min. The thermal conductivity could be improved by prolonging the soaking time, which is attributed to decreases in both oxygen content and secondary phases by evaporation and sublimation of the secondary phases. The reducing atmosphere was created by adding carbon particles to the AlN packing powder surrounding the specimen. The thermal conductivity could be significantly improved by microwave reheating of the sintered specimen under the reducing atmosphere. This is considered to be due to enhanced removal of the secondary phases by the reducing atmosphere. Sintering under the reducing atmosphere was found to retard densification because of the earlier removal of the secondary phases, thus resulting in a poor densification and a low thermal conductivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Slack, G.A., Tanzilli, R.A., Pohl, R.O., Vandersande, J.W.: The intrinsic thermal conductivity of AlN. J. Phys. Chem. Solids 48(7), 641 1987CrossRefGoogle Scholar
2Mroz, T.J. Jr.: Annual materials review: Aluminum nitride. Am. Ceram. Soc. Bull. 71, 782 1992Google Scholar
3Sheppard, L.M.: Aluminum nitride: A versatile but challenging material. Am. Ceram. Soc. Bull. 69, 1801 1990Google Scholar
4Bachilard, B., Joubert, P.: Aluminum nitride by carbothermal nitridation. Mater. Sci. Eng., A 109, 247 1989CrossRefGoogle Scholar
5Merzhanov, A.G., Borovinskaya, I.P.: New class of combustion processes. Combust. Sci. Technol. 10, 195 1975CrossRefGoogle Scholar
6Lin, C.N., Chung, S.L.: Combustion synthesis of aluminum nitride powder using additives. J. Mater. Res. 16(8), 2200 2001CrossRefGoogle Scholar
7Lin, C.N., Chung, S.L.: A combustion synthesis method for synthesis of aluminum nitride powder using aluminum container. J. Mater. Res. 16(12), 3518 2001CrossRefGoogle Scholar
8Lin, C.N., Chung, S.L.: Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers (II). J. Mater. Res. 19(10), 3037 2004CrossRefGoogle Scholar
9Hsieh, C.Y., Chung, S.L.: High thermal conductivity epoxy molding compound filled with a combustion synthesized AlN powder. J. Appl. Polym. Sci. 102, 4737 2006CrossRefGoogle Scholar
10Hsieh, C.Y., Lin, C.N., Chung, S.L., Cheng, J., Agrawal, D.K.: Microwave sintering of AlN powder synthesized by a SHS method. J. Eur. Ceram. Soc. 27, 343 2007CrossRefGoogle Scholar
11Jackson, T.B., Vikar, A.V., More, K.L., Dinwiddie, R.B.: High-thermal-conductivity aluminum nitride ceramics: The effect of thermodynamic, kinetic, and microstructural factors. J. Am. Ceram. Soc. 6, 1421 1997Google Scholar
12Nakano, H., Watari, K., Hayashi, H., Urabe, K.: Microstructure characterization of high-thermal-conductivity aluminum nitride ceramic. J. Am Ceram. Soc. 12, 3093 2002Google Scholar
13Nakano, H., Watari, K., Urabe, K.: Grain boundary phase in AlN ceramics fired under reducing N2 atmosphere with carbon. J. Eur. Ceram. Soc. 23, 1761 2003CrossRefGoogle Scholar
14Cheng, J., Agrawal, D., Roy, R., Jayan, P.S.: Continuous microwave sintering of alumina abrasive grits. J. Mater. Proc. Technol. 108, 26 2000CrossRefGoogle Scholar
15Katz, J.D., Blake, R.D.: Microwave sintering of multiple alumina and composite components. Am. Ceram. Soc. Bull. 70, 1304 1991Google Scholar
16Wang, J., Binner, J., Vaidhyanathan, B., Joomun, N., Kliner, J., Dimitrakis, G., Cross, T.E.: Evidence for the microwave effect during hybrid sintering. J. Am. Ceram. Soc. 6, 1977 2006CrossRefGoogle Scholar
17Cheng, J., Agrawal, D., Zhang, Y., Roy, R.: Development of translucent aluminum nitride (AlN) using microwave sintering process. J. Electroceram. 9, 67 2002CrossRefGoogle Scholar
18Xu, G.F., Olorunyolemi, T., Wilson, O.C., Lloyd, I.K., Carmel, Y.: Microwave sintering of high-density, high thermal conductivity AlN. J. Mater. Res. 17(11), 2837 2002CrossRefGoogle Scholar
19Komeya, K., Inoue, H., Tsuge, A.: Effect of various additives on sintering of aluminum nitride. Yogyo-Kyokai-Shi. 6, 330 1981CrossRefGoogle Scholar
20Hundere, A.M., Einarsrud, M.: Effects of reduction of the Al-Y-O containing secondary phases during sintering of AlN with YF3 additions. J. Eur. Ceram. Soc. 16, 899 1996CrossRefGoogle Scholar
21Virkar, A.V., Jackson, T.B., Cutler, R.A.: Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of aluminum nitride. J. Am. Ceram. Soc. 72, 2031 1989CrossRefGoogle Scholar
22Watari, K., Nakano, H., Urabe, K., Ishizaki, K., Cao, S., Mori, K.: Thermal conductivity of AlN ceramic with a very low amount of grain boundary phase at 4 to 1000 K. J. Mater. Res. 17(11), 2940 2002CrossRefGoogle Scholar
23Kuramoto, N., Taniguchi, H., Numata, Y., Aso, I.: Sintering process of translucent AlN and effect of impurities on thermal conductivity of AlN ceramics. Yogyo-Kyokai-Shi. 93(9), 517 1985CrossRefGoogle Scholar
24Terao, R., Tatami, J., Meguro, T., Komeya, K.: Fracture behavior of AlN ceramics with rare earth oxides. J. Eur. Ceram. Soc. 22, 1051 2002CrossRefGoogle Scholar
25Bellosi, A., Esposito, L., Scafe, E., Fabbri, L.: The influence of microstructure on the thermal conductivity of aluminum nitride. J. Mater. Sci. 29, 5014 1994CrossRefGoogle Scholar
26Brosnan, K.H., Messing, G.L., Agrawal, D.K.: Microwave sintering of alumina at 2.45 GHz. J. Am. Ceram. Soc. 86, 1307 2003CrossRefGoogle Scholar
27Yagi, T., Shinozaki, K., Kato, M., Sawada, Y., Mizutani, N.: Migration of grain boundary phase of AlN ceramics on joined sample of sintered and hot-pressed body. J. Ceram. Soc. Jpn. 98, 198 1990CrossRefGoogle Scholar
29Watari, K., Kawamoto, M., Ishizaki, K.: Sintering chemical reactions to increase thermal conductivity of aluminum nitride. J. Mater. Sci. 26, 4727 1991CrossRefGoogle Scholar
30Yan, H., Cannon, W.R., Shanefield, D.J.: Evolution of carbon during burnout and sintering of tape-cast aluminum nitride. J. Am. Ceram. Soc. 1, 166 1993CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Enhancement of thermal conductivity in ceramics obtained from a combustion synthesized AlN powder by microwave sintering and reheating
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Enhancement of thermal conductivity in ceramics obtained from a combustion synthesized AlN powder by microwave sintering and reheating
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Enhancement of thermal conductivity in ceramics obtained from a combustion synthesized AlN powder by microwave sintering and reheating
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *