Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-23T12:32:54.889Z Has data issue: false hasContentIssue false

Energetics of hydration on uranium oxide and peroxide surfaces

Published online by Cambridge University Press:  14 June 2019

Xiaofeng Guo*
Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, USA; and Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
Di Wu*
Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, USA; Department of Chemistry, Washington State University, Pullman, Washington 99164, USA; and The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA
Sergey V. Ushakov
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616, USA
Tatiana Shvareva
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616, USA
Hongwu Xu
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Alexandra Navrotsky*
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616, USA
a)Address all correspondence to these authors. e-mail:
Get access


Enthalpies of water adsorption on amorphous and crystalline oxides and peroxides of uranium are reported. Despite substantial structural and computational research on reactions between actinides and water, understanding their surface interactions from the energetic perspective remains incomplete. Direct calorimetric measurements of hydration energetics of nano-sized, bulk-sized UO2, U3O8, anhydrous γ-UO3, amorphous UO3, and U2O7 were carried out, and their integral adsorption enthalpies were determined to be −67.0, −70.2, −73.0, −84.1, −61.6, and −83.6 kJ/mol water, with corresponding water coverages of 4.6, 4.5, 4.1, 5.2, 4.4, and 4.1 H2O per nm2, respectively. These energetic constraints are important for understanding the interfacial phenomena between water and U-containing phases. Additionally, this set of data also helps predict the absorption and desorption behavior of water from nuclear waste forms or used nuclear fuels under repository conditions. There are also underlying relations for water coverage among different U compounds. These experimentally determined data can be used as benchmark values for future computational investigations.

Invited Paper
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to


Eriksen, T.E., Eklund, U.B., Werme, L., and Bruno, J.: Dissolution of irradiated fuel: A radiolytic mass balance study. J. Nucl. Mater. 227, 76 (1995).CrossRefGoogle Scholar
Wronkiewicz, D.J., Bates, J.K., Wolf, S.F., and Buck, E.C.: Ten-year results from unsaturated drip tests with UO2 at 90 °C: Implications for the corrosion of spent nuclear fuel. J. Nucl. Mater. 238, 78 (1996).CrossRefGoogle Scholar
Sunder, S., Shoesmith, D.W., and Miller, N.H.: Oxidation and dissolution of nuclear fuel (UO2) by the products of the alpha radiolysis of water. J. Nucl. Mater. 244, 66 (1997).CrossRefGoogle Scholar
Christensen, H. and Sunder, S.: Current state of knowledge of water radiolysis effects on spent nuclear fuel corrosion. Nucl. Technol. 131, 102 (2000).10.13182/NT00-A3107CrossRefGoogle Scholar
Haschke, J.M., Allen, T.H., and Morales, L.A.: Reaction of plutonium dioxide with water: Formation and properties of PuO2+x. Science 287, 285 (2000).CrossRefGoogle Scholar
La Verne, J.A. and Tandon, L.: H2 production in the radiolysis of water on UO2 and other oxides. J. Phys. Chem. B 107, 13623 (2003).10.1021/jp035381sCrossRefGoogle Scholar
Senanayake, S.D., Waterhouse, G.I.N., Chan, A.S.Y., Madey, T.E., Mullins, D.R., and Idriss, H.: Probing surface oxidation of reduced uranium dioxide thin film using synchrotron radiation. J. Phys. Chem. C 111, 7963 (2007).CrossRefGoogle Scholar
Senanayake, S.D., Waterhouse, G.I.N., Chan, A.S.Y., Madey, T.E., Mullins, D.R., and Idriss, H.: The reactions of water vapour on the surfaces of stoichiometric and reduced uranium dioxide: A high resolution XPS study. Catal. Today 120, 151 (2007).CrossRefGoogle Scholar
Idriss, H.: Surface reactions of uranium oxide powder, thin films and single crystals. Surf. Sci. Rep. 65, 67 (2010).CrossRefGoogle Scholar
Donald, S.B., Dai, Z.R., Davisson, M.L., Jeffries, J.R., and Nelson, A.J.: An XPS study on the impact of relative humidity on the aging of UO2 powders. J. Nucl. Mater. 487, 105 (2017).10.1016/j.jnucmat.2017.02.016CrossRefGoogle Scholar
Haschke, J.M., Allen, T.H., and Morales, L.A.: Surface and corrosion chemistry of plutonium. Los Alamos Sci. 26, 252 (2000).Google Scholar
Xu, H.W., Navrotsky, A., Nyman, M.D., and Nenoff, T.M.: Thermochemistry of microporous silicotitanate phases in the Na2O–Cs2O–SiO2–TiO2–H2O system. J. Mater. Res. 15, 815 (2000).CrossRefGoogle Scholar
Balmer, M.L., Su, Y., Xu, H., Bitten, E., McCready, D., and Navrotsky, A.: Synthesis, structure determination, and aqueous durability of Cs2ZrSi3O9. J. Am. Ceram. Soc. 84, 153 (2001).CrossRefGoogle Scholar
Skomurski, F.N., Shuller, L.C., Ewing, R.C., and Becker, U.: Corrosion of UO2 and ThO2: A quantum-mechanical investigation. J. Nucl. Mater. 375, 290 (2008).CrossRefGoogle Scholar
Guo, X., Ushakov, S.V., Labs, S., Curtius, H., Bosbach, D., and Navrotsky, A.: Energetics of metastudtite and implications for nuclear waste alteration. Proc. Natl. Acad. Sci. U.S.A. 111, 17737 (2014).CrossRefGoogle ScholarPubMed
Guo, X., Wu, D., Xu, H., Burns, P.C., and Navrotsky, A.: Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO3, U2O7, and UO4. J. Nucl. Mater. 478, 158 (2016).CrossRefGoogle Scholar
Haire, R.G. and Haschke, J.M.: Plutonium oxide systems and related corrosion products. MRS Bull. 26, 689 (2001).CrossRefGoogle Scholar
Sattonnay, G., Ardois, C., Corbel, C., Lucchini, J.F., Barthe, M.F., Garrido, F., and Gosset, D.: Alpha-radiolysis effects on UO2 alteration in water. J. Nucl. Mater. 288, 11 (2001).CrossRefGoogle Scholar
McNamara, B., Buck, E., and Hanson, B.: Observation of studtite and metastudtite on spent fuel. Mater. Res. Soc. Symp. Proc. 757, 401 (2003).Google Scholar
Guo, X., Szenknect, S., Mesbah, A., Labs, S., Clavier, N., Poinssot, C., Ushakov, S.V., Curtius, H., Bosbach, D., Ewing, R.C., Burns, P.C., Dacheux, N., and Navrotsky, A.: Thermodynamics of formation of coffinite, USiO4. Proc. Natl. Acad. Sci. U.S.A. 112, 6551 (2015).CrossRefGoogle ScholarPubMed
Kubatko, K.A.H., Helean, K.B., Navrotsky, A., and Burns, P.C.: Stability of peroxide-containing uranyl minerals. Science 302, 1191 (2003).CrossRefGoogle ScholarPubMed
Hanson, B., McNamara, B., Buck, E., Friese, J., Jenson, E., Krupka, K., and Arey, B.: Corrosion of commercial spent nuclear fuel. 1. Formation of studtite and metastudtite. Radiochim. Acta 93, 159 (2005).CrossRefGoogle Scholar
Armstrong, C.R., Nyman, M., Shvareva, T., Sigmon, G.E., Burns, P.C., and Navrotsky, A.: Uranyl peroxide enhanced nuclear fuel corrosion in seawater. Proc. Natl. Acad. Sci. U.S.A. 109, 1874 (2012).CrossRefGoogle Scholar
Tiferet, E., Gil, A., Bo, C., Shvareva, T.Y., Nyman, M., and Navrotsky, A.: The energy landscape of uranyl-peroxide species. Chem.–Eur. J. 20, 3646 (2014).10.1002/chem.201304076CrossRefGoogle ScholarPubMed
Taylor, P., Lemire, R.J., and Wood, D.D.: The influence of moisture on air oxidation of UO2—Calculations and observations. Nucl. Technol. 104, 164 (1993).CrossRefGoogle Scholar
Abramowski, M., Redfern, S.E., Grimes, R.W., and Owens, S.: Modification of UO2 crystal morphologies through hydroxylation. Surf. Sci. 490, 415 (2001).10.1016/S0039-6028(01)01368-1CrossRefGoogle Scholar
Jonsson, M., Nielsen, F., Roth, O., Ekeroth, E., Nilsson, S., and Hossain, M.M.: Radiation induced spent nuclear fuel dissolution under deep repository conditions. Environ. Sci. Technol. 41, 7087 (2007).CrossRefGoogle ScholarPubMed
Jegou, C., Caraballo, R., De Bonfils, J., Broudic, V., Peuget, S., Vercouter, T., and Roudil, D.: Oxidizing dissolution of spent MOX47 fuel subjected to water radiolysis: Solution chemistry and surface characterization by Raman spectroscopy. J. Nucl. Mater. 399, 68 (2010).CrossRefGoogle Scholar
Timofeev, A., Migdisov, A.A., Williams-Jones, A.E., Roback, R., Nelson, A.T., and Xu, H.: Uranium transport in acidic brines under reducing conditions. Nat. Commun. 9, 1469 (2018).10.1038/s41467-018-03564-7CrossRefGoogle ScholarPubMed
Grambow, B. and Poinssot, C.: Interactions between nuclear fuel and water at the Fukushima Daiichi reactors. Elements 8, 213 (2012).CrossRefGoogle Scholar
Burns, P.C., Ewing, R.C., and Navrotsky, A.: Nuclear fuel in a reactor accident. Science 335, 1184 (2012).CrossRefGoogle Scholar
Guo, X., White, J.T., Nelson, A.T., Migdisov, A., Roback, R., and Xu, H.: Enthalpy of formation of U3Si2: A high-temperature drop calorimetry study. J. Nucl. Mater. 507, 44 (2018).CrossRefGoogle Scholar
Finch, R. and Murakami, T.: Systematics and paragenesis of uranium minerals. Rev. Mineral. 38, 152 (1999).Google Scholar
Icenhour, A.S., Toth, L.M., and Luo, H.M.: Water sorption and gamma radiolysis studies for uranium oxides. Nucl. Technol. 147, 258 (2004).CrossRefGoogle Scholar
Geckeis, H., Lutzenkirchen, J., Polly, R., Rabung, T., and Schmidt, M.: Mineral-water interface reactions of actinides. Chem. Rev. 113, 1016 (2013).CrossRefGoogle ScholarPubMed
Janeczek, J. and Ewing, R.C.: Coffinitization—A mechanism for the alteration of UO2 under reducing conditions. In Scientific Basis for Nuclear Waste Management XV, Vol. 257 (Materials Research Society, Warrendale, Pennsylvania, 1992); p. 497.Google Scholar
Deditius, A.P., Utsunomiya, S., and Ewing, R.C.: The chemical stability of coffinite, USiO4·nH2O; 0 < n < 2, associated with organic matter: A case study from grants uranium region, New Mexico, USA. Chem. Geol. 251, 33 (2008).CrossRefGoogle Scholar
Frondel, C.: Systematic mineralogy of uranium and thorium. U.S. Geol. Surv. Bull. 1064, 400 (1958).Google Scholar
Deliens, M. and Piret, P.: Metastudtite, UO4·2H2O, a new mineral from Shinkolobwe, Shaba, Zaire. Am. Mineral. 68, 456 (1983).Google Scholar
Tan, A.H.H., Grimes, R.W., and Owens, S.: Structures of UO2 and PuO2 surfaces with hydroxide coverage. J. Nucl. Mater. 344, 13 (2005).CrossRefGoogle Scholar
Hay, P.J.: Theoretical studies of hydrogen and water adsorption on actinide oxide surfaces. Mater. Res. Soc. Symp. Proc. 893, 1–6 (2005).CrossRefGoogle Scholar
Skomurski, F.N., Ewing, R.C., and Becker, U.: Adsorption energy trends on UO2 and ThO2 surfaces. Geochim. Cosmochim. Acta 71, A945 (2007).Google Scholar
Alexandrov, V., Shvareva, T.Y., Hayun, S., Asta, M., and Navrotsky, A.: Actinide dioxides in water: Interactions at the interface. J. Phys. Chem. Lett. 2, 3130 (2011).CrossRefGoogle Scholar
Rak, Z., Ewing, R.C., and Becker, U.: Hydroxylation-induced surface stability of AnO2 (An = U, Np, Pu) from first-principles. Surf. Sci. 608, 180 (2013).CrossRefGoogle Scholar
Bo, T., Lan, J.H., Wang, C.Z., Zhao, Y.L., He, C.H., Zhang, Y.J., Chai, Z.F., and Shi, W.Q.: First-principles study of water reaction and H2 formation on UO2 (111) and (110) single crystal surfaces. J. Phys. Chem. C 118, 21935 (2014).CrossRefGoogle Scholar
Maldonado, P., Evins, L.Z., and Oppeneer, P.M.: Ab initio atomistic thermodynamics of water reacting with uranium dioxide surfaces. J. Phys. Chem. C 118, 8491 (2014).CrossRefGoogle Scholar
Tian, X-f., Wang, H., Xiao, H-x., and Gao, T.: Adsorption of water on UO2 (111) surface: Density functional theory calculations. Comput. Mater. Sci. 91, 364 (2014).CrossRefGoogle Scholar
Senanayake, S.D. and Idriss, H.: Water reactions over stoichiometric and reduced UO2 (111) single crystal surfaces. Surf. Sci. 563, 135 (2004).CrossRefGoogle Scholar
Idriss, H. and Senanayake, S.D.: Reaction of water on oxygen-defected UO2 (111) single crystal surface. Abstr. Pap. Am. Chem. S. 227, U89 (2004).Google Scholar
Espriu-Gascon, A., Llorca, J., Domínguez, M., Giménez, J., Casas, I., and de Pablo, J.: UO2 surface oxidation by mixtures of water vapor and hydrogen as a function of temperature. J. Nucl. Mater. 467, 240 (2015).CrossRefGoogle Scholar
Stubbs, J.E., Chaka, A.M., Ilton, E.S., Biwer, C.A., Engelhard, M.H., Bargar, J.R., and Eng, P.J.: UO2 oxidative corrosion by nonclassical diffusion. Phys. Rev. Lett. 114, 246103 (2015).CrossRefGoogle Scholar
Shelly, L., Schweke, D., Zalkind, S., Shamir, N., Barzilai, S., Gouder, T., and Hayun, S.: Effect of U content on the activation of H2O on Ce1−xUxO2+δ surfaces. Chem. Mater. 30, 8650–8660 (2018).CrossRefGoogle Scholar
Paffett, M.T., Kelly, D., Joyce, S.A., Morris, J., and Veirs, K.: A critical examination of the thermodynamics of water adsorption on actinide oxide surfaces. J. Nucl. Mater. 322, 45 (2003).CrossRefGoogle Scholar
Ushakov, S.V. and Navrotsky, A.: Direct measurements of water adsorption enthalpy on hafnia and zirconia. Appl. Phys. Lett. 87, 164103 (2005).CrossRefGoogle Scholar
Hayun, S., Shvareva, T.Y., and Navrotsky, A.: Nanoceria—Energetics of surfaces, interfaces and water adsorption. J. Am. Ceram. Soc. 94, 3992 (2011).CrossRefGoogle Scholar
Odoh, S.O., Shamblin, J., Colla, C.A., Hickam, S., Lobeck, H.L., Lopez, R.A.K., Olds, T., Szymanowski, J.E.S., Sigmon, G.E., Neuefeind, J., Casey, W.H., Lang, M., Gagliardi, L., and Burns, P.C.: Structure and reactivity of X-ray amorphous uranyl peroxide, U2O7. Inorg. Chem. 55, 3541 (2016).CrossRefGoogle ScholarPubMed
Wu, D., Guo, X., Sun, H., and Navrotsky, A.: Energy landscape of water and ethanol on silica surfaces. J. Phys. Chem. C 119, 15428 (2015).CrossRefGoogle Scholar
Li, G., Sun, H., Xu, H., Guo, X., and Wu, D.: Probing the energetics of molecule–material interactions at interfaces and in nanopores. J. Phys. Chem. C 121, 26141 (2017).CrossRefGoogle Scholar
McEachern, R.J. and Taylor, P.: A review of the oxidation of uranium dioxide at temperatures below 400 °C. J. Nucl. Mater. 254, 87 (1998).CrossRefGoogle Scholar
Leinders, G., Bes, R., Pakarinen, J., Kvashnina, K., and Verwerft, M.: Evolution of the uranium chemical state in mixed-valence oxides. Inorg. Chem. 56, 6784 (2017).CrossRefGoogle Scholar
Desgranges, L., Baldinozzi, G., Simeone, D., and Fischer, H.: Refinement of the α-U4O9 crystalline structure: New insight into the U4O9 → U3O8 transformation. Inorg. Chem. 50, 6146 (2011).CrossRefGoogle ScholarPubMed
Kvashnina, K., Butorin, S.M., Martin, P., and Glatzel, P.: Chemical state of complex uranium oxides. Phys. Rev. Lett. 111, 253002 (2013).CrossRefGoogle ScholarPubMed
Tamasi, A.L., Boland, K.S., Czerwinski, K., Ellis, J.K., Kozimor, S.A., Martin, R.L., Pugmire, A.L., Reilly, D., Scott, B.L., Sutton, A.D., Wagner, G.L., Walensky, J.R., and Wilkerson, M.P.: Oxidation and hydration of U3O8 materials following controlled exposure to temperature and humidity. Anal. Chem. 87, 4210 (2015).CrossRefGoogle ScholarPubMed
Allen, G., Tempest, P., and Tyler, J.: The formation of U3O8 on crystalline UO2. Philos. Mag. B 54, L67 (1986).CrossRefGoogle Scholar
Allen, G.C., Tempest, P.A., and Tyler, J.W.: Oxidation of crystalline UO2 studied using X-ray photoelectron spectroscopy and X-ray diffraction. J. Chem. Soc., Faraday Trans. 1 83, 925 (1987).CrossRefGoogle Scholar
Allen, G. and Holmes, N.: A mechanism for the UO2 to α-U3O8 phase transformation. J. Nucl. Mater. 223, 231 (1995).CrossRefGoogle Scholar
Taylor, P., Wood, D.D., Owen, D.G., and Park, G-I.: Crystallization of U3O8 and hydrated UO3 on UO2 fuel in aerated water near 200 °C. J. Nucl. Mater. 183, 105 (1991).CrossRefGoogle Scholar
Ushakov, S.V., Dalalo, N., and Navrotsky, A.: Gas adsorption microcalorimetry: Probing energetics of oxide surfaces. Geochim. Cosmochim. Acta 69, A485 (2005).Google Scholar