Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-13T16:05:16.988Z Has data issue: false hasContentIssue false

Electrical and microstructural characteristics of Ge/Cu ohmic contacts to n-type GaAs

Published online by Cambridge University Press:  31 January 2011

M. O. Aboelfotoh
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7907
S. Oktyabrsky
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7907
J. Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7907
J. M. Woodall
Affiliation:
School of Electrical Engineering, Purdue University, West LaFayette, Indiana 47907–1285
Get access

Abstract

It is shown that Cu–Ge alloys prepared by depositing sequentially Cu and Ge layers onto GaAs substrates at room temperature followed by annealing at 400 °C form a low-resistance ohmic contact to n-type GaAs over a wide range of Ge concentration that extends from 15 to 40 at. %. The contacts exhibit a specific contact resistivity of 7 × 10−7 Ω cm2 on n-type GaAs with doping concentrations of 1 × 1017 cm−3. The contact resistivity is unaffected by varying the Ge concentration in the range studied and is not influenced by the deposition sequence of the Cu and Ge layers. Cross-sectional high-resolution transmission electron microscopy results show that the addition of Ge to Cu in this concentration range causes Cu to react only with Ge forming the ξ and ε1–Cu3Ge phases which correlate with the low contact resistivity. The ξ and ε1–Cu3Ge phases have a planar and structurally abrupt interface with the GaAs substrate without any interfacial transition layer. It is suggested that Ge is incorporated into the GaAs as an n-type impurity creating a highly doped n+-GaAs surface layer which is responsible for the ohmic behavior. n-channel GaAs metal-semiconductor field-effect transistors using ohmic contacts formed with the ξ and ε1–Cu3Ge phases demonstrate a higher transconductance compared to devices with AuGeNi contacts.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Heiblum, M., Nathan, M. I., and Chang, C. A., Solid State Electron. 25, 185 (1985).CrossRefGoogle Scholar
2.Kuan, T. S., Batson, P. E., Jackson, T. N., Rupprecht, H., and Wilkie, E. L., J. Appl. Phys. 54, 6952 (1983).CrossRefGoogle Scholar
3.Shin, Y. C., Murakami, M., Wilkie, E. L., and Callegari, A. C., J. Appl. Phys. 62, 582 (1987); M. Murakami, K. D. Child, J. M. Baker, and A. C. Callegari, J. Vac. Sci. Technol. B4, 903 (1986).CrossRefGoogle Scholar
4.Marshall, E. D., Chen, W. X., Wu, C. S., Lau, S. S., and Kuech, T. F., Appl. Phys. Lett. 47, 298 (1985).CrossRefGoogle Scholar
5.Marshall, E. D., Zhang, B., Wang, L. C., Jiao, P. F., Chen, W. X., Sawada, T., Lau, S. S., Kavanagh, K. L., and Kuech, T. F., J. Appl. Phys. 62, 942 (1987).CrossRefGoogle Scholar
6.Yu, L. S., Wang, L. C., Marshall, E. D., Lau, S. S., and Kuech, T. F., J. Appl. Phys. 65, 1621 (1989).CrossRefGoogle Scholar
7.van Eck, T. E., Chu, P., Chang, W. S. C., and Wieder, H. H., Appl. Phys. Lett. 49, 135 (1986).CrossRefGoogle Scholar
8.Wang, L. C., Lau, S. S., Hsieh, E. K., and Velebir, J. R., Appl. Phys. Lett. 54, 2677 (1989).CrossRefGoogle Scholar
9.Chen, W. X., Hseuh, S. C., Yu, P. K. L., and Lau, S. S., IEEE Electron Device Lett. EDL-7, 471 (1986).CrossRefGoogle Scholar
10.Tanahashi, K., Takata, H. J., Otuki, A., and Murakami, M., J. Appl. Phys. 72, 4183 (1992).CrossRefGoogle Scholar
11.Genut, M. and Eizenberg, M., J. Appl. Phys. 68, 2146 (1990); E. Koltin and M. Eizenberg, J. Appl. Phys. 71, 4604 (1992).CrossRefGoogle Scholar
12.Chen, J. S., Kolawa, E., Nicolet, M-A., and Ruiz, R. P., J. Appl. Phys. 75, 7373 (1994).CrossRefGoogle Scholar
13.Aboelfotoh, M. O., Lin, C. L., and Woodall, J.M., Appl. Phys. Lett. 65, 3245 (1994).CrossRefGoogle Scholar
14.Berger, H. H., Solid State Electron. 15, 145 (1972).CrossRefGoogle Scholar
15.Reeves, G. K. and Harrison, H. B., IEEE Electron Device Lett. EDL-3, 111 (1982).CrossRefGoogle Scholar
16.Aboelfotoh, M. O., Oktyabrsky, S., Narayan, J., and Woodall, J. M., J. Appl. Phys. 75, 5760 (1994).CrossRefGoogle Scholar
17.Krusin-Elbaum, L. and Aboelfotoh, M. O., Appl. Phys. Lett. 58, 1341 (1991); M. O. Aboelfotoh, K. N. Tu, F. Nava, and M. Michelini, J. Appl. Phys. 75, 1616 (1994).CrossRefGoogle Scholar
18.Oktyabrsky, S., Aboelfotoh, M. O., and Narayan, J. (unpublished).Google Scholar
19.Aboelfotoh, M. O., Tawancy, H. M., and Krusin-Elbaum, L., Appl. Phys. Lett. 63, 1622 (1993); M. O. Aboelfotoh and H. M. Tawancy, J. Appl. Phys. 75, 2441 (1994).CrossRefGoogle Scholar
20.Newman, N., van Schilfgaarde, M., Kendelwicz, T., Williams, M. D., and Spicer, W. E., Phys. Rev. B33, 1146 (1986).CrossRefGoogle Scholar
21.Aboelfotoh, M. O. and Tawancy, H. M. (unpublished).Google Scholar
22.Bachrach, R. Z., in Metal-Semiconductor Schottky Barrier Junctions and Their Applications, edited by B. L., Sharma (Plenum Press, New York, 1984), Chap. 2, p. 61.CrossRefGoogle Scholar
23.Waldrop, J. R. and Grant, R. W., Appl. Phys. Lett. 50, 250 (1987).CrossRefGoogle Scholar
24.Kulkarni, A. K. and Lukowski, J. T., J. Appl. Phys. 59, 2901 (1986).CrossRefGoogle Scholar
25.Hall, R. N. and Racette, J. H., J. Appl. Phys. 35, 379 (1964); B. Monemar, H. P. Gislason, and Z. G. Wang, Phys. Rev. B31, 7919 (1985); H. P. Gislason, B. Monemar, W. G. Wang, Ch. Uihlein, and P. L. Liu, ibid. B32, 3723 (1985).CrossRefGoogle Scholar
26.Aboelfotoh, M. O. and Svensson, B. G., Phys. Rev. B44, 12742 (1991).CrossRefGoogle Scholar