Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-19T11:02:58.788Z Has data issue: false hasContentIssue false

Effect of Zr additions on crystal structures and mechanical properties of binary W–Zr alloys: A first-principles study

Published online by Cambridge University Press:  19 November 2018

Jiang Diyou
Affiliation:
Department of Mechanical Engineering, Jiangxi University of Technology, Nanchang 330098, China
Xue Li
Affiliation:
Department of Mechanical Engineering, Jiangxi University of Technology, Nanchang 330098, China
Huang Xuemei
Affiliation:
Department of Mechanical Engineering, Jiangxi University of Technology, Nanchang 330098, China
Wang Tao
Affiliation:
Department of Mechanical Engineering, Jiangxi University of Technology, Nanchang 330098, China
Hu Jianfeng*
Affiliation:
Department of Mechanical Engineering, Jiangxi University of Technology, Nanchang 330098, China
*
a)Address all correspondence to this author. e-mail: huguess211@hotmail.com
Get access

Abstract

The effect of zirconium alloying on the crystal structures and mechanical properties of binary tungsten–zirconium alloys is investigated in this study using the first-principles method. Firstly, we investigate the cell volumes, lattice constants, and formation energies of binary W1−xZrx (x = 0, 0.0625, 0.125, 0.1875, 0.25, and 0.5) alloys. It is shown that binary tungsten–zirconium alloys maintain BCC structures. When the concentration of zirconium atoms is lower than 12.5%, the structures of binary tungsten–zirconium alloys can be thermodynamically stable. The elastic constants of binary tungsten–zirconium alloys are calculated based on the optimized atomic lattice. Then, the elastic modulus and other mechanical parameters are deduced according to the relevant formulas. It is shown that the mechanical strength of binary tungsten–zirconium alloy decreases with an increasing concentration of zirconium atoms, which is lower than the mechanical strength of pure tungsten metal. However, the mechanical strength of binary tungsten–zirconium alloys is higher than that of pure zirconium metal. In addition, zirconium alloying can be effective in improving the ductility of pure tungsten metal.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tanabe, T., Noda, N., and Nakamura, H.: Review of high Z materials for PSI applications. J. Nucl. Mater. 196, 11 (1992).CrossRefGoogle Scholar
Garcia-Rosales, C.: Erosion processes in plasma-wall interactions. J. Nucl. Mater. 211, 202 (1994).CrossRefGoogle Scholar
Chuyanov, V.A.: ITER EDA project status. J. Nucl. Mater. 233, 4 (1996).CrossRefGoogle Scholar
Kurishita, H., Kobayashi, S., Nakai, K., Arakawa, H., Matsuo, S., Takida, T., Takebe, K., and Kawai, M.: Current status of ultra-fine grained W–TiC development for use in irradiation environments. Phys. Scr. T128, 7680 (2007).CrossRefGoogle Scholar
Tokar, M.Z., Coenen, J.W., Philipps, V., and Ueda, Y.: Tokamak plasma response to droplet spraying from melted plasma-facing components. Nucl. Fusion 52, 013013 (2012).CrossRefGoogle Scholar
Zhang, S.W., Wen, Y., and Zhang, H.J.: Low temperature preparation of tungsten nanoparticles from molten salt. Powder Technol. 253, 464466 (2014).CrossRefGoogle Scholar
Kajioka, M.T., Sakamoto, T., Nakai, K., Kobayashi, S., Kurishita, H., Matsuo, S., and Arakawa, H.: Effects of plastic working and MA atmosphere on microstructures of recrystallized W–1.1% TiC. J. Nucl. Mater. 417, 512515 (2011).CrossRefGoogle Scholar
El-Atwani, O., Hinks, J.A., Greaves, G., Gonderman, S., Qiu, T., Efe, M., and Allain, J.P.: In situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments. Sci. Rep. 4, 4716 (2014).CrossRefGoogle ScholarPubMed
Xu, A., Beck, C., Armstrong, D.E.J., Rajan, K., Smith, G.D.W., Bagot, P.A.J., and Roberts, S.G.: Ion-irradiation-induced clustering in W–Re and W–Re–Os alloys: A comparative study using atom probe tomography and nanoindentation measurements. Acta Mater. 87, 121 (2015).CrossRefGoogle Scholar
Kim, Y.D., Oh, N.L., Oh, S.T., and Moon, I.H.: Thermal conductivity of W–Cu composites at various temperatures. Mater. Lett. 51, 420 (2001).CrossRefGoogle Scholar
Dosovitskiy, G.A. and Samoilenkov, S.V.: Thermal expansion of Ni–W, Ni–Cr, and Ni–Cr–W alloys between room temperature and 800 °C. Int. J. Thermophys. 30, 1931 (2009).CrossRefGoogle Scholar
Ren, H.L., Liu, X.J., and Ning, J.G.: Microstructure and mechanical properties of W–Zr reactive materials. Mater. Sci. Eng., A 660, 205 (2016).CrossRefGoogle Scholar
Luo, P.G., Wang, Z.C., Jiang, C.L., Mao, L., and Li, Q.: Experimental study on impact-initiated characters of W/Zr energetic fragments. Mater. Des. 84, 72 (2015).CrossRefGoogle Scholar
Fu, H.M., Liu, N., Wang, A.M., Li, H., Zhu, Z.W., Zhang, H.W., Zhang, H.F., and Hu, Z.Q.: High-temperature deformation behaviors of W/Zr based amorphous interpenetrating composite. Mater. Des. 58, 182 (2014).CrossRefGoogle Scholar
McCafferty, E.: Graph theory and the passivity of binary alloys more examples. J. Electrochem. Soc. 151, B82 (2004).CrossRefGoogle Scholar
Xie, Z.M., Zhang, T., Liu, R., Fang, Q.F., Miao, S., Wang, X.P., and Liu, C.S.: Grain growth behavior and mechanical properties of zirconium micro-alloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys. Int. J. Refract. Met. Hard Mater. 51, 180 (2015).CrossRefGoogle Scholar
Chen, H.Y., Luo, L.M., Chen, J.B., Zan, X., Zhu, X.Y., Xu, Q., Luo, G.N., Chen, J.L., and Wu, Y.C.: Effects of zirconium element on the microstructure and deuterium retention of W–Zr/Sc2O3 composites. Sci. Rep. 6, 32678 (2016).CrossRefGoogle ScholarPubMed
Kharchenko, V.K. and Bukhanovskii, V.V.: High-temperature strength of refractory metals, alloys and composite materials based on them. Part 1. tungsten, its alloys, and composites. Strength Mater. 44, 512 (2012).CrossRefGoogle Scholar
Xie, Z.M., Liu, R., Fang, Q.F., Zhou, Y., Wang, X.P., and Liu, C.S.: Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten. J. Nucl. Mater. 444, 175 (2014).CrossRefGoogle Scholar
Wen, S.L., He, K.H., Cui, H.N., Pan, M., Huang, Z., and Zhao, Y.: Migration properties of mono-vacancy in W-4d/5d transition metal alloys. J. Alloys Compd. 728, 363 (2017).CrossRefGoogle Scholar
Setyawan, W. and Kurtz, R.J.: Effects of transition metals on the grain boundary cohesion in tungsten. Scr. Mater. 66, 558 (2012).CrossRefGoogle Scholar
Kong, X.S., Wu, X.B., You, Y.W., Liu, C.S., Fang, Q.F., Chen, J.L., Luo, G.N., and Wang, Z.G.: First-principles calculations of transition metal-solute interactions with point defects in tungsten. Acta Mater. 66, 172 (2014).CrossRefGoogle Scholar
Shi, S.Q., Tanaka, S., and Kohyama, M.: First-principles study of the tensile strength and failure of α-A1203(0001)/Ni(111) interfaces. Phys. Rev. B 76, 075431 (2007).CrossRefGoogle Scholar
Shi, S.Q., Zhang, H., Ke, X.Z., Ouyang, C.Y., Lei, M.S., and Chen, L.Q.: First-principles study of lattice dynamics of LiFePO4. Phys. Lett. A 373, 4096 (2009).CrossRefGoogle Scholar
Shang, S.L., Hector, L.G. Jr., Shi, S.Q., Qi, Y., Wang, Y., and Liu, Z.K.: Lattice dynamics, thermodynamics and elastic properties of monoclinic Li2CO3 from density functional theory. Acta Mater. 60, 5204 (2012).CrossRefGoogle Scholar
Feng, X.K., Shi, S.Q., Shen, J.Y., Shang, S.L., Yao, M.Y., and Liu, Z.K.: Lattice dynamics, thermodynamics and elastic properties of C22-Zr6FeSn2 from first-principles calculations. J. Nucl. Mater. 479, 461 (2016).CrossRefGoogle Scholar
Yang, Y.H., Wu, Q., Cui, Y.H., Chen, Y.C., Shi, S.Q., Wang, R.Z., and Yan, H.: Elastic properties, defect thermodynamics, electrochemical window phase stability, and Li+ mobility of Li3PS4: Insights from first-principles calculations. ACS Appl. Mater. Interfaces 8, 25229 (2016).CrossRefGoogle ScholarPubMed
Shi, S.Q., Gao, J., Liu, Y., Zhao, Y., Wu, Q., Ju, W.W., Ouyang, C.Y., and Xiao, R.J.: Multi-scale computation methods: Their applications in lithium-ion battery research and development. Chin. Phys. B 25, 018212 (2016).CrossRefGoogle Scholar
Kresse, G. and Hafner, J.: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115 (1993).CrossRefGoogle ScholarPubMed
Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRefGoogle ScholarPubMed
Blӧchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Wang, Y. and Perdew, J.P.: Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 44, 13298 (1991).CrossRefGoogle ScholarPubMed
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Jin, S., Liu, Y.L., Zhou, H.B., Zhang, Y., and Lu, G.H.: First-principles investigation on the effect of carbon on hydrogen trapping in tungsten. J. Nucl. Mater. 415, S709 (2011).CrossRefGoogle Scholar
Kittel, B.C.: Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996).Google Scholar
Wallace, D.C.: Thermoelastic theory of stressed crystals and higher-order elastic constants. Solid State Phys. 25, 301 (1970).CrossRefGoogle Scholar
Zhao, J.J., Winey, J.M., and Gupta, Y.M.: First principles calculations of second- and third-order elastic constants for single crystals of arbitrary symmetry. Phys. Rev. B 75, 094105 (2007).CrossRefGoogle Scholar
Voigt, W.: über die Beziehungzwischen den beiden Elasticitӓts constantenisotroper Kӧrper. Ann. Phys. 38, 573 (1889).CrossRefGoogle Scholar
Reuss, A.: Berechnung der Flieβgrenze von Mischkristallen auf Grupd der Plastizitäts bedingung für Einkristalle. Z. Angew. Math. Mech. 9, 49 (1929).CrossRefGoogle Scholar
Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., London, Sect. A 65, 349 (1952).CrossRefGoogle Scholar
Hill, R.: Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 11, 357 (1963).CrossRefGoogle Scholar
Hu, Y.J., Shang, S.L., Wang, Y., Darling, K.A., Butler, B.G., Kecskes, L.J., and Liu, Z.K.: Effects of alloying elements and temperature on the elastic properties of W-based alloys by first-principles calculations. J. Alloys Compd. 671, 267 (2016).CrossRefGoogle Scholar
Söderlind, P., Eriksson, O., Wills, J.M., and Boring, A.M.: Theory of elastic constants of cubic transition metals and alloys. Phys. Rev. B 48, 5844 (1993).CrossRefGoogle ScholarPubMed
Kushwah, S.S., Sharma, M.P., and Tomar, Y.S.: An equation of state for molybdenum and tungsten. Phys. B 339, 193 (2003).CrossRefGoogle Scholar
Meradji, H., Drablia, S., and Ghemid, S.: First-principles elastic constants and electronic structure of BP, BAs, and BSb. Phys. Status Solidi B 241, 2881 (2004).CrossRefGoogle Scholar
Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
Lin, Y.C., Luo, S.C., Chen, M.S., He, D.G., and Zhao, C.Y.: Effects of pressure on anisotropic elastic properties and minimum thermal conductivity of D022-Ni3Nb phase: First-principles calculations. J. Alloys Compd. 688, 285 (2016).CrossRefGoogle Scholar
Kamran, S., Chen, K.Y., and Chen, L.: Ab initio examination of ductility features of fcc metals. Phys. Rev. B 79, 024106 (2009).CrossRefGoogle Scholar