Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-c2bf7 Total loading time: 0.236 Render date: 2021-05-15T10:56:09.112Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Effect of crystallinity on the dielectric loss of sputter-deposited (Ba,Sr)TiO3 thin films in the microwave range

Published online by Cambridge University Press:  31 January 2011

Tae-Gon Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–744, Korea
Jeongmin Oh
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–744, Korea
Taeho Moon
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–744, Korea
Yongjo Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–744, Korea
Byungwoo Park
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–744, Korea
Young-Taek Lee
Affiliation:
School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151–744, Korea
Sangwook Nam
Affiliation:
School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151–744, Korea
Corresponding
E-mail address:
Get access

Abstract

The crystallinity dependence of the microwave dielectric losses in (Ba,Sr)TiO3 thin films was investigated. The sputter-deposition temperatures were altered to vary the level of thin-film crystallinity on a Pt/Si substrate. The dielectric losses (tan δ) were measured up to 6 GHz without parasitic (stray) effects by using a circular-patch capacitor geometry and an equivalent-circuit model. The microwave dielectric losses increased from 0.0024 ± 0.0018 to 0.0102 ± 0.0017 with increasing crystallinity. These deteriorated dielectric losses showed a good correlation with the symmetry-breaking defects, as confirmed by Raman spectra at approximately 760 cm−1, inducing microscopic polar regions above the Curie temperature of the bulk (Ba0.43Sr0.57)TiO3.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Im, J., Auciello, O., Baumann, P.K., Streiffer, S.K., Kaufman, D.Y., and Krauss, A.R., Appl. Phys. Lett. 76, 625 (2000).CrossRefGoogle Scholar
2.Gim, Y., Hudson, T., Fan, Y., Kwon, C., Findikoglu, A.T., Gibbons, B.J., Park, B.H., and Jia, Q.X., Appl. Phys. Lett. 77, 1200 (2000).CrossRefGoogle Scholar
3.Padmini, P., Taylor, T.R., Lefevre, M.J., Nagra, A.S., York, R.A., and Speck, J.S., Appl. Phys. Lett. 75, 3186 (1999).CrossRefGoogle Scholar
4.Chang, W., Gilmore, C.M., Kim, W-J., Pond, J.M., Kirchoefer, S.W., Qadri, S.B., Chirsey, D.B., Horwitz, J.S., J. Appl. Phys. 87, 3044 (2000).CrossRefGoogle Scholar
5.Streiffer, S.K., Basceri, C., Parker, C.B., Lash, S.E., and Kingon, A.I., J. Appl. Phys. 86, 4565 (1999).CrossRefGoogle Scholar
6.Park, B.H., Peterson, E.J., Jia, Q.X., Lee, J., Zheng, X., Si, W., and Xi, X.X., Appl. Phys. Lett. 78, 533 (2001).CrossRefGoogle Scholar
7.Park, B.H., Gim, Y., Fan, Y., Jia, Q.X., and Lu, P., Appl. Phys. Lett. 77, 2587 (2000).CrossRefGoogle Scholar
8.Zakharchenko, I.N., Radchenko, M.G., Sapozhnikov, L.A., Sviridov, E.V., and Dudkevich, V.P., Crystallogr. Rep. 43, 131 (1998).Google Scholar
9.Kim, Y., Oh, J., Kim, T-G., and Park, B., Appl. Phys. Lett. 78, 2363 (2001); T. Kim, J. Oh, B. Park, and K.S. Hong, Appl. Phys. Lett. 76, 3043 (2000).CrossRefGoogle Scholar
10.Chang, W., Horwitz, J.S., Kim, W-J., Gilmore, C.M., Pond, J.M., Kirchoefer, S.W., Chrisey, D.B., in Materials Issues for Tunable RF and Microwave Devices, edited by Jia, Q., Miranda, F.A., Oates, D.E., and Xi, X. (Mater. Res. Soc. Symp. Proc. 603, Warrendale, PA, 2000), p. 181.Google Scholar
11.Ma, Z., Becker, A.J., Polakos, P., Huggins, H., Pastalan, J., Wu, H., Watts, K., Wong, Y.H., and Mankiewich, P., IEEE Trans. Electron Devices 45, 1811 (1998).CrossRefGoogle Scholar
12.Yuzyuk, Y.I., Alyoshin, V.A., Zakharchenko, I.N., Sviridov, E.V., Almeida, A., Chaves, M.R., Phys. Rev. B 65, 134107-1 (2002).CrossRefGoogle Scholar
13.Toulouse, J., DiAntonio, P., Vugmeister, B.E., Wang, X.M., Knauss, L.A., Phys. Rev. Lett. 68, 232 (1992).CrossRefGoogle Scholar
14.Uwe, H., Lyons, K.B., Carter, H.L., and Fleury, P.A., Phys. Rev. B 33, 6436 (1986).CrossRefGoogle Scholar
15.Raptis, C., Phys. Rev. B 38, 10007 (1988).CrossRefGoogle Scholar
16.Naik, R., Nazarko, J.J., Flattery, C.S., Venkateswaran, U.D., Naik, V.M., Mohammed, M.S., Auner, G.W., Mantese, J.V., Schubring, N.W., Micheli, A.L., and Catalan, A.B., Phys. Rev. B 61, 11367 (2000).CrossRefGoogle Scholar
17.Kuo, S-Y., Liao, W-Y., and Hsieh, W-F., Phys. Rev. B 64, 224103-1 (2001).CrossRefGoogle Scholar
18.Sirenko, A.A., Akimov, I.A., Fox, J.R., Clark, A.M., Li, H-C., Si, W., Xi, X.X., Phys. Rev. Lett. 82, 4500 (1999).CrossRefGoogle Scholar
19.McCulloch, D.G. and Prawer, S., J. Appl. Phys. 78, 3040 (1995).CrossRefGoogle Scholar
20.Bianchi, U., Kleemann, W., and Bednorz, J.G., J. Phys.: Condens. Mater 6, 1229 (1994).Google Scholar
21.Waser, R. and Smyth, D.M., in Ferroelectric Thin Films: Synthesis and Basic Properties, edited by Araujo, C. P. de, Scott, J.F., and Taylor, G.W. (Gorden and Breach, Amsterdam, The Netherlands, 1996), p. 47.Google Scholar
22.Halperin, B.I. and Varma, C.M., Phys. Rev. B 14, 4030 (1976).CrossRefGoogle Scholar
23.Hubert, C., Levy, J., Carter, A.C., Chang, W., Kiechoefer, S.W., Horwitz, J.S., and Chrisey, D.B., Appl. Phys. Lett. 71, 3353 (1997).CrossRefGoogle Scholar
24.Tenne, D.A., Clark, A.M., James, A.R., Chen, K., Xi, X.X., Appl. Phys. Lett. 79, 3836 (2001).CrossRefGoogle Scholar
25.Hubert, C. and Levy, J., Appl. Phys. Lett. 73, 3229 (1998).CrossRefGoogle Scholar
26.Tagantsev, A.K., Appl. Phys. Lett. 76, 1182 (2000).CrossRefGoogle Scholar
27.Vendik, O.G. and Platonova, L.M., Sov. Phys. Solid State 13, 1353 (1971).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of crystallinity on the dielectric loss of sputter-deposited (Ba,Sr)TiO3 thin films in the microwave range
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect of crystallinity on the dielectric loss of sputter-deposited (Ba,Sr)TiO3 thin films in the microwave range
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect of crystallinity on the dielectric loss of sputter-deposited (Ba,Sr)TiO3 thin films in the microwave range
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *