Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-28T01:19:57.671Z Has data issue: false hasContentIssue false

Comparison of different models for melting point change of metallic nanocrystals

Published online by Cambridge University Press:  31 January 2011

M. Zhao
Affiliation:
Department of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
X. H. Zhou
Affiliation:
Department of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
Q. Jiang*
Affiliation:
Department of Materials Science and Engineering, Jilin University, Changchun 130025, People's Republic of China
*
Get access

Abstract

Our phenomenological model without adjustable parameters for the size dependence and dimension dependence of melting point depression and enhancement of nanocrystals is introduced. The predictions of our models are consistent with both of experimental results and other thermodynamic models for metallic nanocrystals while the difference between our model and other theoretical considerations in mesoscopic size range is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Semenchenko, V.K., Surface Phenomena in Metals and Alloys (Pergamon, Oxford, United Kingdom, 1961), p. 281.Google Scholar
2.Sambles, J.R., Proc. R. Soc. A 324, 339 (1971).Google Scholar
3.Buffat, Ph. and Borel, J.P., Phys. Rev. A 13, 2287 (1976).CrossRefGoogle Scholar
4.Couchman, P.R. and Jesser, W.A., Nature 269, 481 (1977).CrossRefGoogle Scholar
5.Allen, G.L., Gile, W.W., and Jesser, W.A., Acta. Metall. 28, 1695 (1980).CrossRefGoogle Scholar
6.Skripov, V.P., Koverda, V.P., and Skokov, V.N., Phys. Status Solidi A 66, 109 (1981).CrossRefGoogle Scholar
7.Castro, T., Reifenberger, R., Choi, E., and Andres, R.P., Phys. Rev. B 42, 8548 (1990).CrossRefGoogle Scholar
8.Goldstein, A.N., Echer, C.M., and Alivistos, A.P., Science 256, 1425 (1992).CrossRefGoogle Scholar
9.Eckert, J., Holzer, J.C., Ahn, C.C., Fu, Z., and Johnson, W.L., Nanostruct. Mater. 2, 407 (1993).CrossRefGoogle Scholar
10.Shi, F.G., J. Mater. Res. 9, 1307 (1994).CrossRefGoogle Scholar
11.Ben David, T., Lereah, Y., Deutscher, G., Kofmans, R., and Cheyssac, P., Philos. Mag. A 71, 1135 (1995).CrossRefGoogle Scholar
12.Lai, S.L., Guo, J.Y., Petrova, V., Ramanath, G., and Allen, L.H., Phys. Rev. Lett. 77, 99 (1996).CrossRefGoogle Scholar
13.Johari, G.P., Philos. Mag. A 77, 1367 (1998).CrossRefGoogle Scholar
14.Peters, K.F., Cohen, J.B., and Chung, Y-W., Phys. Rev. B 57, 13430 (1998).CrossRefGoogle Scholar
15.Morishige, K. and Kawano, K., J. Phys. Chem. B 103, 7906 (1999).CrossRefGoogle Scholar
16.Jiang, Q., Shi, H.X., and Zhao, M., J. Chem. Phys. 111, 2176 (1999).CrossRefGoogle Scholar
17.Zhang, Z., Li, J.C., and Jiang, Q., J. Phys. D: Appl. Phys. 33, 2653 (2000).CrossRefGoogle Scholar
18.Wen, Z., Zhao, M., and Jiang, Q., J. Phys. Condens. Mater. 12, 8819 (2000).CrossRefGoogle Scholar
19.Zhang, Z., Zhao, M., and Jiang, Q., Semicond. Sci. Technol. 16, L33 (2001).CrossRefGoogle Scholar
20.Pawlow, P., Z. Phys. Chem. 65, 545 (1909).CrossRefGoogle Scholar
21.Hanszen, K.J., Z. Phys. 157, 523 (1960).CrossRefGoogle Scholar
22.Jones, D.R.H.. J. Mater. Sci. 9, 1 (1974).CrossRefGoogle Scholar
23.Saka, H., Nishikawa, Y., and Imura, T., Philos. Mag. A 57, 895 (1988).CrossRefGoogle Scholar
24.Graback, L. and Bohr, J., Phys. Rev. Lett. 64, 934 (1990).CrossRefGoogle Scholar
25.Zhang, D.L. and Cantor, B., Acta Metall. Mater. 39, 1595 (1991).CrossRefGoogle Scholar
26.Goswami, R. and Chattopadhyay, K., Philos. Mag. Lett. 68, 215 (1993).CrossRefGoogle Scholar
27.Sheng, H.W., Ren, G., Peng, L.M., Hu, Z.Q., and Lu, K., Philos. Mag. Lett. 73, 179 (1996).CrossRefGoogle Scholar
28.Lu, K., Sheng, H.W., and Jin, Z.H., Chinese J. Mater. Res. 11, 658 (1997, in Chinese).Google Scholar
29.Sheng, H.W., Ren, G., Peng, L.M., Hu, Z.Q., and Lu, K., J. Mater. Res. 12, 119 (1997).CrossRefGoogle Scholar
30.Chattopadhyay, K. and Goswami, R., Prog. Mater. Sci. 42, 287 (1997).CrossRefGoogle Scholar
31.Zhang, L., Jin, Z.H., Zhang, L.H., Sui, M.L., and Lu, K., Phys. Rev. Lett. 85, 1484 (2000).CrossRefGoogle Scholar
32.Jiang, Q., Zhang, Z., and Li, J.C., Chem. Phys. Lett. 322, 549 (2000).CrossRefGoogle Scholar
33.Jiang, Q., Zhang, Z., and Li, J.C., Acta Mater. 48, 4791 (2000).CrossRefGoogle Scholar
34.Jiang, Q., Liang, L.H., and Li, J.C., J. Phys. Condens. Mater. 13, 565 (2001).CrossRefGoogle Scholar
35.Reiss, H. and Wilson, I.B., J. Colloid Sci. 3, 551 (1948).CrossRefGoogle Scholar
36.Jiang, Q., Shi, H.X., and Zhao, M., Acta Mater. 47, 2109 (1999).CrossRefGoogle Scholar
37.Lindemann, F.A., Z. Phys. 11, 609 (1910).Google Scholar
38.Mott, N.F., Proc. R. Soc. A 146, 465 (1934).Google Scholar
39.Regel’, A.R. and Glazov, V.M., Semiconductors 29, 405 (1995).Google Scholar
40.King, H.K., in Physical Metallurgy, edited by Cahn, R.W. (NorthHolland, Amsterdam, The Netherlands 1970), pp. 5963.Google Scholar
41.Table of Periodic Properties of the Elements (Sargent-Welch Scientific, Skokie, IL 1980), p. 1.Google Scholar
42.Ubbelohde, A.R., Melting and Crystal Structure (Clarendon Press, Oxford, United Kingdom, 1965), p. 171.Google Scholar
43.Frenken, J.W.M. and van, J.F. der Veen, Phys. Rev. Lett. 54, 134 (1985).CrossRefGoogle Scholar
44.Chen, E.T., Barnett, R.N., and Landman, U., Phys. Rev. B 41, 439 (1990).CrossRefGoogle Scholar
45.Antonelli, A., Khanna, S.N., and Jena, P., Phys. Rev. B 48, 8263 (1993).CrossRefGoogle Scholar