Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T11:33:08.488Z Has data issue: false hasContentIssue false

Chemistry and structural modulations in Bi2Sr2CuO6

Published online by Cambridge University Press:  31 January 2011

Y. Shen*
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne, Illinois 60439
D.R. Richards
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne, Illinois 60439
D.G. Hinks
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne, Illinois 60439
A.W. Mitchell
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne, Illinois 60439
*
a)Current address: Department of Metallurgical Engineering and Materials Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.
Get access

Abstract

A series of samples along the composition lines Bi2+xSr2−xCuOy, and Bi2Sr2−xCuOy have been used to study the structural modulation, chemistry, and superconducting properties of pseudo-tetragonal Bi2Sr2CuO6 (2201). The 2201 phase can be formed from crystallization of thin glassy platelets. The sample displayed a strong crystallographic (00l) orientation which made it possible to determine incommensurate modulations near (00l) reflections using a conventional x-ray θ-2θ scan. From the crystallization of the 2201 phase, it was found that structural modulation was intrinsic to the phase, and ordering of the structure required a long time at high temperature. High temperature in situ x-ray diffraction of a 2201 Bi2Sr1.85CuOy platelet showed that the modulation existed at 875 °C in O2 (Tmelt ≍ 892 °C in O2). These suggest that the structural modulation cannot be caused solely by oxygen ordering and that metal-ion displacement must be involved. By removing 0.04 to 0.05 oxygen atom per formula unit from Bi2Sr2CuOy and Bi2Sr1.85CuOy, the c* components of the modulation changed from 0.31 to 0.26 and from 0.38 to 0.31, respectively, while the b* component of the modulation remained approximately 0.2. This demonstrates that oxygen, while not the sole cause, does play a role in the formation of the structural modulation. However, the invariance of bmod with respect to the change in oxygen content does not support the model that explained the modulation by inserting extra oxygen in the BiO plane. By varying metal-ion concentrations of Bi and Sr we found that both the lattice parameters and the modulation vectors depended more on the Bi/Sr ratio than on the Sr concentration alone. As the Bi/Sr ratio increased from 1.0 to 1.35, the modulation lines moved toward the (00l) reflections. The corresponding superstructural periodicities were calculated to vary from ∼1/5b* + 0.32 c* to ∼1/5 b* + 0.63 c*. Effects of oxygen content and metal-ion concentration on the 2201 phase formation and the superconducting properties will also be discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L207 (1988).CrossRefGoogle Scholar
2.Michel, C., Hervieu, M., Borel, M. M., Grandin, A., Deslandes, F., Provost, J., and Raveau, B., Z. Phys. B 68, 421 (1987).CrossRefGoogle Scholar
3.Torardi, C. C., Subramanian, M. A., Calabrese, J. C., Gopalakrishnan, J., McCarron, E. M., Morrissey, K. J., Askew, T. R., Flippen, R. B, Chowdhry, U., and Sleight, A. W., Phys. Rev. B 38, 225 (1988).CrossRefGoogle Scholar
4.Torrance, J. B., Tokura, Y., Laplaca, S. J., Huang, T. C., Savoy, R. J., and Nazzal, A. I., Solid State Commun. 66, 703 (1988).CrossRefGoogle Scholar
5.Sawa, H., Fujiki, H., Tomiraoto, K., and Akimitsu, J., Jpn. J. Appl. Phys. 27, L830 (1988).CrossRefGoogle Scholar
6.Onodo, M. and Sato, M., Solid State Commun. 67, 799 (1988).CrossRefGoogle Scholar
7.Chakoumakos, B.C., Budai, J.D., Sales, B.C., and Sonder, Edward, in High Temperature Superconductors: Relationships between Properties, Structure, and Solid-State Chemistry, edited by J. R. Jorgensen, K. Kitazawa, J. M. Tarascon, M. S. Thompson, and J.B. Torrance (Mater. Res. Soc. Symp. Proc. 156 1989), p. 329.CrossRefGoogle Scholar
8.Chakoumakos, B. C., Ebey, P. S., Sales, B. C., and Sonder, Edward, J. Mater. Res. 4, 767 (1989).CrossRefGoogle Scholar
9.Schneemeyer, L. F., Waszczak, J. V., Fleming, R. M., Martin, S., Fiory, A. T., and Sunshine, S. A., in High Temperature Superconductors: Relationships between Properties, Structure, and Solid-State Chemistry, edited by J. R. Jorgensen, K. Kitazawa, J. M. Tarascon, M.S. Thompson, and J.B. Torrance (Mater. Res. Soc. Symp. Proc. 156, 1989), p. 177.CrossRefGoogle Scholar
10.Fiory, A.T., Martin, S., Fleming, R.M., Schneemeyer, L.F., and Waszczak, J. V., Phys. Rev. B 41, 2627 (1990).CrossRefGoogle Scholar
11.Shen, Y., Richards, D. R., Hinks, D. G., and Mitchell, A.W., Appl. Phys. Lett. 59, 1559 (1991).CrossRefGoogle Scholar
12.Akimutsu, J., Yamazaki, A., Sawa, H., and Fujiki, H., Jpn. J. Appl. Phys. 26, L208 (1987).Google Scholar
13.Roth, R.S., Rawn, C. J., and Bendersky, L. A., J. Mater. Res. 5, 46 (1990).CrossRefGoogle Scholar
14.Tarascon, J.M., Miceli, P. F., Barboux, P., Hwang, D. M., Hull, G.W., Giroud, M., Greene, L.H., LePage, Y., McKinnon, W.R., Tseiepis, E., Pleizier, G., Eibschutz, M., Neumann, D.A., and Rhyne, J.J., Phys. Rev. B 39, 11587 (1989).CrossRefGoogle Scholar
15.Coppens, P., Gao, Y., Lee, P., Graafsma, H., Ye, J., and Bush, P., Superconductivity and Applications, edited by Kowk, H. S., Kao, Y.H., and Shaw, D.T. (Plenum Press, New York, 1990), p. 285.Google Scholar
16.van Tendeloo, G., Zandbergen, H. W., and Amelinckx, S., Solid State Commun. 66, 927 (1988).CrossRefGoogle Scholar
17.Tallon, J. L., Buckley, R. C., Gilbert, P. W., Presland, M. R., Brown, I. W. M., Bowden, M. E., Christian, L. A., and Goguel, R., Nature 333, 6169 (1988).CrossRefGoogle Scholar
18.Matsui, Y., Takekawa, S., Nozaki, H., and Umezono, A., Jpn. J. Appl. Phys. 28, L602 (1989).CrossRefGoogle Scholar
19.Matsui, Y., Takekawa, S., Horiuchi, S., and Umezono, A., Jpn. J. Appl. Phys. 27, L1873 (1989).CrossRefGoogle Scholar
20.Dietderich, D. R., Togano, H., Maeda, H., Ikeda, S., Matsui, Y., and Mukaida, H., Materials Transactions, JIM 31, 608 (1990).CrossRefGoogle Scholar
21.Hiroi, Z., Ikeda, Y., Takano, M., and Bando, Y., J.Mater. Res. 6, 435 1991).CrossRefGoogle Scholar
22.Zandbergen, W. W., Groen, W. A., Mijlhoff, F. C., van Tendeloo, G., and Amelinckx, S., Physica C 156, 325 (1988).CrossRefGoogle Scholar
23.Tarascon, J.M., LePage, Y., Barboux, P., Greene, L.H., McKinnon, W.R., Hull, G. W., Giroud, M., and Hwang, D. M., Phys. Rev. B 37, 9382 (1988).CrossRefGoogle Scholar
24.LePage, Y., McKinnon, W.R., Tarascon, J.M., and Barboux, P., Phys. Rev. B 40, 6810 (1989).CrossRefGoogle Scholar
25.Hewat, E.A., Capponi, J.J., and Marezio, M., Physica C 157, 502 (1989).CrossRefGoogle Scholar
26.Hinks, D. G., Soderholm, L., Capone, D. W., Dabrowski, B., Mitchell, A. W., and Shi, D., Appl. Phys. Lett. 53, 423 (1988).CrossRefGoogle Scholar
27.Yoshimura, M., Sung, T. H., Nakagawa, Z., and Nakamura, T., Jpn. J. Appl. Phys. 27, L1877 (1988).CrossRefGoogle Scholar
28.Shimomura, S., Takahashi, K., Ohta, M., Watanabe, A., Seidon, M., and Hosono, F., Jpn. J. Appl. Phys. 27, L1890 (1988).CrossRefGoogle Scholar
29.Nassau, K., Miller, A. E., Gyorgy, E. M., and Siegrist, T., J. Mater. Res. 4, 1330 (1989).CrossRefGoogle Scholar
30.Köster, U. and Herold, U., Glassy Metals, edited by Güntherodt, H.J. and Beck, H. (Springer-Verlag, Berlin, Heidelberg, 1981), p. 225.Google Scholar
31.Cheetham, A. K., Chippindale, A. M., and Hibble, S. J., Nature 333, 21 (1988).CrossRefGoogle Scholar
32.Tarascon, J. M., McKinnon, W. R., LePage, Y., Remschnig, K., Ramesh, R., Jones, R., Pleizier, G., and Hull, G. W., Physica C 172, 13 (1990).CrossRefGoogle Scholar
33.O'Bryan, H. M., Rhodes, W. W., and Gallagher, P. K., Chem. Mater 2, 421 (1990)CrossRefGoogle Scholar