Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T06:20:28.988Z Has data issue: false hasContentIssue false

Chemical vapor deposition of titanium nitride thin films from tetrakis(dimethylamido)titanium and hydrazine as a coreactant

Published online by Cambridge University Press:  31 January 2011

Carmela Amato-Wierda*
Affiliation:
Materials Science Program, University of New Hampshire, Durham, New Hampshire 03824
Derk A. Wierda
Affiliation:
Department of Chemistry, Saint Anselm College, Manchester, New Hampshire 03102
*
a)Address all correspondence to this author.
Get access

Abstract

Hydrazine was used as a coreactant with tetrakis(dimethylamido)titanium for the low-temperature chemical vapor deposition of TiN between 50 and 200 °C. The TiN film-growth rates ranged from 5 to 45 nm/min. Ti:N ratios of approximately 1:1 were achieved. The films contain between 2 and 25 at.% carbon, as well as up to 36 at.% oxygen resulting from diffusion after air exposure. The resistivity of these films is approximately 104 μΩ cm. Annealing the films in ammonia enhances their crystallinity. The best TiN films were produced at 200 °C from a 2.7% hydrazine–ammonia mixture. The Ti:N ratio of these films is approximately 1:1, and they contain no carbon or oxygen. These films exhibit the highest growth rates observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Toth, L.E., Transition Metal Carbides and Nitrides (Academic Press, New York, 1971), pp. 47.Google Scholar
2.Oyama, S.T., in The Chemistry of Transition Metal Carbides and Nitrides, edited by Oyama, S.T. (Chapman and Hall, London, 1996), pp. 114.CrossRefGoogle Scholar
3.Pierson, H.O., Handbook of Chemical Vapor Deposition: Principles, Technology and Applications (Noyes Publications, Park Ridge, NJ, 1992), pp. 353355.Google Scholar
4.Hale, T.E., in Ceramic Films and Coatings, edited by Wachtman, J.B. and Haber, R.A. (Noyes Publications, NJ, 1993), p. 27.Google Scholar
5.Wang, S-Q., Mater. Res. Soc. Bull. 19, 30 (1994).CrossRefGoogle Scholar
6.Singer, P., Semiconductor International, August 1994, Vol. 17, p. 57.Google Scholar
7.Eizenberg, M., Mater. Res. Soc. Bull. 20, 38 (1995).CrossRefGoogle Scholar
8.Bunshah, R.F., in Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications, edited by Bunshah, R.F. (Noyes Publications, Park Ridge, NJ, 1992), pp. 2022.Google Scholar
9.Leutenecker, R., Froschle, B., Cao-Minh, U., and Ramm, P., Thin Solid Films 270, 621 (1995).CrossRefGoogle Scholar
10.Eizenberg, M., in Advanced Metallization for Future ULSI, edited by Tu, K.N., Mayer, J.W., Poate, J.M., and Chen, L.J. (Mater. Res. Soc. Symp. Proc. 427, Pittsburgh, PA, 1996), p. 325.Google Scholar
11.Sugiyama, K., Sangryul, P., Takahashi, Y., and Motojima, S., J. Electrochem. Soc. 122, 1545 (1975).CrossRefGoogle Scholar
12.Fix, R.M., Gordon, R.G., and Hoffman, D.M., Chem. Mater. 2, 235 (1990).CrossRefGoogle Scholar
13.Fix, R.M., Gordon, R.G., and Hoffman, D.M., Chem. Mater. 3, 1138 (1991).CrossRefGoogle Scholar
14.Musher, J.M. and Gordon, R.G., J. Mater. Res. 11, 989 (1996).CrossRefGoogle Scholar
15.Musher, J.M. and Gordon, R.G., J. Electrochem. Soc. 143, 736 (1996).CrossRefGoogle Scholar
16.Hoffman, D.M., Polyhedron 13, 1169 (1994).CrossRefGoogle Scholar
17.Dubois, L.H., Zegarski, B.R., and Girolami, G.S., J. Electrochem. Soc. 139, 3603 (1994).CrossRefGoogle Scholar
18.Prybyla, J.A., Chiang, C-M., and Dubois, L.H., J. Electrochem. Soc. 140, 2695 (1993).CrossRefGoogle Scholar
19.Dubois, L.H., Polyhedron 13, 1329 (1994).CrossRefGoogle Scholar
20.Raaijmakers, I.J., Thin Solid Films 247, 85 (1994).CrossRefGoogle Scholar
21.Raaijmakers, I.J., and Yang, J., Appl. Surf. Sci. 73, 31 (1993).CrossRefGoogle Scholar
22.Katz, A., Feingold, A., Pearton, S.J., Nakahara, S., Ellington, M., Chakrabarti, U.K., Geva, M., and Lane, E., J. Appl. Phys. 70, 3666 (1991).CrossRefGoogle Scholar
23.Katz, A., Feingold, A., Nakahara, S., Pearton, S.J., Lane, E., Geva, M., Stevie, F.A., and Jones, K., J. Appl. Phys. 15, 993 (1992).CrossRefGoogle Scholar
24.Paranjpe, A. and IslamRaja, M., J. Vac. Sci. Technol. B 13, 2105 (1995).CrossRefGoogle Scholar
25.Sun, S.C. and Tsai, M.H., Thin Solid Films 253, 440 (1994).CrossRefGoogle Scholar
26.Kim, D., Kim, J.J., Park, J.W., and Kim, J.J., J. Electrochem. Soc. 143, L188 (1996).CrossRefGoogle Scholar
27.Intemann, A., Koerner, H., and Koch, F., J. Electrochem. Soc. 140, 3215 (1993).CrossRefGoogle Scholar
28.Eizenberg, M., Littau, L., Ghanayem, S., Mak, A., Maeda, Y., Chang, M., and Sinha, A.K., Appl. Phys. Lett. 65, 2416 (1994).CrossRefGoogle Scholar
29.Baliga, J., Semiconductor International, March 1997, Vol. 20, p. 76.Google Scholar
30.Gerfin, T. and Dahmen, K-H., in CVD of Nonmetals, edited by Rees, W.S. Jr, (VCH Publishers, New York, 1996), pp. 155158.Google Scholar
31.Lewkebandara, T.S., Sheridan, P.H., Heeg, M.J., Rheingold, A.L., and Winter, C.H., Inorg. Chem. 33, 5879 (1994).CrossRefGoogle Scholar
32.Winter, C.H., Sheridan, P.H., Lewkebandara, T.S., Heeg, M.J., and Proscia, J.W., J. Am. Chem. Soc. 114, 1095 (1992).CrossRefGoogle Scholar
33.Faltermeir, C., Goldberg, C., Jones, M., Upham, A., Manger, D., Peterson, G., Lau, J., Kaloyeros, A.E., Arkles, B., and Paranjpe, A., J. Electrochem. Soc. 144, 1002 (1997).CrossRefGoogle Scholar
34.Jain, M.K., Cale, T.S., and Gandy, T.H., J. Electrochem. Soc. 140, 242 (1993).CrossRefGoogle Scholar
35.Fujieda, S., Mizuta, M., and Matsumoto, Y., Adv. Mater Opt. Electron. 6, 127 (1996).3.0.CO;2-F>CrossRefGoogle Scholar
36.Hersee, S.D. and Ballingall, J.M., J. Vac. Sci. Technol. 8, 800 (1990).CrossRefGoogle Scholar
37.Grayson, M., Encyclopedia of Chemical Technology, 3rd ed. (John Wiley, New York, 1980), Vol. 12, p. 739.Google Scholar
38.Doolittle, L.R., Nucl. Instrum. Methods B9, 334 (1985).Google Scholar
39.Doolittle, L.R., Nucl. Instrum. Methods B15, 227 (1986).CrossRefGoogle Scholar
40.Shin, H.K., Shin, H.J., Lee, J.G., Kang, S.W., and Ahn, B.T., Chem. Mater. 9, 76 (1997).CrossRefGoogle Scholar
41.Truong, C.M., Chen, P.J., Corneille, J.S., Oh, W.S., and Goodman, D.W., J. Phys. Chem. 99, 8831 (1995).CrossRefGoogle Scholar