Hostname: page-component-5d59c44645-7l5rh Total loading time: 0 Render date: 2024-02-25T19:48:00.361Z Has data issue: false hasContentIssue false

Changes in Preferred Orientation of Pt Thin Films Deposited by dc Magnetron Sputtering Using Ar/O2 Gas Mixtures

Published online by Cambridge University Press:  31 January 2011

Min Hong Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–742, Korea
Tae-Soon Park
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–742, Korea
Euijoon Yoon
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–742, Korea
Dong-Su Lee
Affiliation:
Advanced Materials Area, Tong Yang Central Laboratories, Yongin, Kyoungki 449–910, Korea
Dong-Yeon Park
Affiliation:
Advanced Materials Area, Tong Yang Central Laboratories, Yongin, Kyoungki 449–910, Korea
Hyun-Jung Woo
Affiliation:
Advanced Materials Area, Tong Yang Central Laboratories, Yongin, Kyoungki 449–910, Korea
Dong-Il Chun
Affiliation:
Advanced Materials Area, Tong Yang Central Laboratories, Yongin, Kyoungki 449–910, Korea
Jowoong Ha
Affiliation:
Advanced Materials Area, Tong Yang Central Laboratories, Yongin, Kyoungki 449–910, Korea
Get access

Abstract

(200)-oriented Pt thin films were deposited on SiO2/Si substrates by dc magnetron sputtering using Ar/O2 gas mixtures. Oxygen incorporation into Pt films changed deposition rate, resistivity, stress, and preferred orientation of the films. Increase in film resistivity and decrease in tensile stress were presumed to be the results of the incorporated oxygen into grain boundaries, while the change of preferred orientation resulted from the oxygen incorporation into the Pt lattice. The preferential growth of (200) planes with less total strain energy from the incorporated oxygen resulted in strong (200) preferred orientation in Pt films.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Moazzami, R., Semicond. Sci. Technol. 10, 375 (1995).Google Scholar
2.Al-Shareef, H. N., Gifford, K. D., Rou, S. H., Hren, P. D., Auciello, O., and Kingon, A., Integrated Ferroelectronics 3, 321 (1993).Google Scholar
3.Hren, P. D., Rou, S. H., Al-Shareef, H. N., Ameen, M. S., Auciello, O., and Kingon, A. I., Integrated Ferroelectrics 2, 311 (1992).Google Scholar
4.Hwang, C. S., Park, S. O., Kang, C. S., Cho, H-J., Kang, H-K., Ahn, S. T., and Lee, M.Y., Jpn. J. Appl. Phys. 34, 5178 (1995).Google Scholar
5.Al-Shareef, H. N., Bellur, K. R., Auciello, O., and Kingon, A. I., Ferroelectrics 152, 85 (1994).Google Scholar
6.Okuyama, M. and Hamakawa, Y., Int. J. Eng. Sci. 29, 391 (1991).Google Scholar
7.Ogawa, T., Senda, A., and Kasnami, T., Jpn. J. Appl. Phys. 30, 2145 (1991).Google Scholar
8.Kanno, I., Fujii, S., Kamada, T., and Takayama, R., Appl. Phys. Lett. 70, 1378 (1997).Google Scholar
9.Kim, S. and Baik, S., J. Vac. Sci. Technol. A 13, 95 (1995).Google Scholar
10.Narayan, J., Tiwari, P., Jagannadham, K., and Holland, O. W., Appl. Phys. Lett. 64, 2093 (1994).Google Scholar
11.Hecq, M., Hecq, A., and Liemans, M., J. Appl. Phys. 49, 6176 (1978).Google Scholar
12.Hecq, M. and Hecq, A., J. Vac. Sci. Technol. 18, 219 (1981).Google Scholar
13.Gittis, A. and Dobrev, D., Thin Solid Films 130, 335 (1985).Google Scholar
14.Oh, U. C. and Je, J.H., J. Appl. Phys. 74, 1692 (1993).Google Scholar
15.Stoney, G. G., Proc. R. Soc. London, Ser. A 82, 172 (1909).Google Scholar
16.Lee, D-S., Park, D-Y., Kim, M. H., Chun, D-I., Ha, J., and Yoon, E., in Thin Films—Structure and morphology, edited by Moss, S. C., Ila, D., Cammarata, R.C., Chason, E. H., Einstein, T. L., and Williams, E. D. (Mater. Res. Soc. Symp. Proc. 441, Pittsburgh, PA, 1997), p. 341.Google Scholar
17.Bennewitz, C.D., Westwood, W.D., and Brown, J.D., J. Appl. Phys. 46, 558 (1975).Google Scholar
18.Neff, N., Henkel, S., Hartmannsgruber, E., Steinbeiss, E., Michalke, W., Steenbeck, K., and Schmidt, H. G., J. Appl. Phys. 79, 7672 (1996).Google Scholar
19.Thornton, J. A., J. Vac. Sci. Technol. A 4, 3059 (1986).Google Scholar
20.CRC Handbook of Chemistry and Physics, 68th ed. (CRC Press Inc., Boca Raton, FL).Google Scholar
21.Alexander, P. M. and Hoffmann, R. W., J. Vac. Sci. Technol. 13, 96 (1976).Google Scholar
22.Machlin, E. S., Materials Science in Microelectronics: The Relationships between Thin Film Processing and Structure (Giro Press, New York, 1995), pp. 157171.Google Scholar
23.Lotgerling, F. K., J. Inorg. Nucl. Chem. 9, 113 (1959).Google Scholar
24. JCPDS 4–802.Google Scholar
25.Park, D-Y., Lee, D-S., Kim, M. H., Park, T-S., Woo, H-J., Yoon, E., Chun, D-I., and Ha, J., in Thin Films—Structure and morphology, edited by Moss, S. C., Ila, D., Cammarata, R. C., Chason, E. H., Einstein, T. L., and Williams, E. D. (Mater. Res. Soc. Symp. Proc. 441, Pittsburgh, PA, 1997), p. 335.Google Scholar
26.Kim, M. H., Park, T-S., Lee, D-S., Park, D-Y., Woo, H-J., Chun, D-I., Ha, J., and Yoon, E., J. Mater. Res. 14, 634 (1999).Google Scholar