Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-15T13:14:44.053Z Has data issue: false hasContentIssue false

Anisotropic mechanical properties of ultra-incompressible, hard osmium diboride

Published online by Cambridge University Press:  31 January 2011

Hsiu-Ying Chung
Department of Materials Science and Engineering and California NanoSystems Institute, University of California–Los Angeles, Los Angeles, California 90095
J-M. Yang*
Department of Materials Science and Engineering and California NanoSystems Institute, University of California–Los Angeles, Los Angeles, California 90095
S.H. Tolbert
Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California–Los Angeles, Los Angeles, California 90095
R.B. Kaner*
Department of Chemistry and Biochemistry, Department of Materials Science and California NanoSystems Institute, University of California, Los Angeles—Los Angeles, California 90095
Get access


Borides of high electron density metals such as Os show promise as hard materials. Arc-melting elemental osmium and boron under an argon atmosphere produced osmium diboride (OsB2). Both a Vickers diamond microindenter and a Berkovich nanoindenter were used to measure hardness. Vickers microindentation indicates that the hardness of OsB2 increases significantly with decreasing applied load. The average hardness reaches approximately 37 GPa as the applied load is lowered to 0.245 N. The hardness is found to be highly dependent on the crystallographic orientation. For the {010} grains, along the 〈100〉 direction, the average hardness is significantly higher than that in the orthogonal 〈001〉 direction. Cracks associated with pop-in events in the nanoindentation load–displacement curves are observed in the {010} grains. The measured Young’s modulus of OsB2 is 410 ± 35 GPa, which is comparable to that obtained from first-principles calculations.


Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1Haines, J., Leger, J.M.Bocquillon, G.: Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31, 1 2001CrossRefGoogle Scholar
2Cynn, H., Klepeis, J.E., Yoo, C-S.Young, D.A.: Osmium has the lowest experimentally determined compressibility. Phys. Rev. Lett. 88, 135701 2002CrossRefGoogle ScholarPubMed
3Kenichi, T.: Bulk modulus of osmium: High-pressure powder x-ray diffraction experiments under quasihydrostatic conditions. Phys. Rev. B 70, 012101 2004CrossRefGoogle Scholar
4Occelli, F., Farber, D.L., Badro, J., Aracne, C.M., Teter, D.M., Hanfland, M., Canny, B.Couzinet, B.: Experimental evidence for a high-pressure isostructural phase transition in osmium. Phys. Rev. Lett. 93, 0955021 2004Google ScholarPubMed
5Kaner, R.B., Gilman, J.J.Tolbert, S.H.: Designing superhard materials. Science 308, 1268 2005CrossRefGoogle ScholarPubMed
6Kempter, C.P.: Further investigations of RuC and OsC. J. Chem. Phys. 41, 1515 1964CrossRefGoogle Scholar
7Young, A.F., Sanloup, C., Gregoryanz, E., Scandolo, S., Hemley, R.J.Mao, H-K.: Synthesis of novel transition metal nitrides IrN2 and OsN2. Phy. Rev. Lett. 96, 155501 2006CrossRefGoogle ScholarPubMed
8Cumberland, R.W., Weinberger, M.B., Gilman, J.J., Clark, S.M., Tolbert, S.H.Kaner, R.B.: Osmium diboride, an ultra-incompressible, hard material. J. Am. Chem. Soc. 127, 7264 2005CrossRefGoogle ScholarPubMed
9Chen, Z.Y., Xiang, H.J., Yang, J., Hou, J.G.Zhu, Q.: Structural and electronic properties of OsB2: A hard metallic material. Phys. Rev. B 74, 012102 2006CrossRefGoogle Scholar
10Gou, H., Hou, L., Zhang, J., Li, H., Sun, G.Gao, F.: First-principles study of low compressibility osmium borides. Appl. Phys. Lett. 88, 221904 2006CrossRefGoogle Scholar
11Chiodo, S., Gotsis, H.J., Russo, N.Sicilia, E.: OsB2 and RuB2, ultra-incompressible, hard materials: First-principles electronic-structure calculations. Chem. Phys. Lett. 425, 311 2006CrossRefGoogle Scholar
12Hebbache, M., Stuparevic, L.Zivkovic, D.: A new superhard material: Osmium diboride OsB2. Solid State Commun. 139, 227 2006CrossRefGoogle Scholar
13Oliver, W.C.Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992CrossRefGoogle Scholar
14JCPDS No. 17-0370. International Center for Diffraction Data Newton Square, PA 2003Google Scholar
15Roof, R.B. Jr.Kempter, C.P.: New orthorhombic phase in Ru–B and Os–B systems. J. Chem. Phys. 37, 1473 1962CrossRefGoogle Scholar
16Aronsson, B.: Crystal structure of RuB2, OsB2, and IrB1.35 and some general comments on crystal chemistry of borides in composition range MeB–MeB3. Acta Chem. Scand. A 17, 2036 1963CrossRefGoogle Scholar
17Sargent, P.M.: Microindentation Techniques in Science and Engineering edited by P. Blau and B. Lawn ASTM Ann Arbor, MI 1985 160CrossRefGoogle Scholar
18Doerner, M.F.Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 1986CrossRefGoogle Scholar
19Chung, H.Y., Weinberger, B., Levine, J.B., Kavner, A., Yang, J-M., Tolbert, S.H.Kaner, R.B.: Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 316, 436 2007CrossRefGoogle ScholarPubMed
20Hebbache, M.: Shear modulus and hardness of crystals: Density-functional calculations. Solid State Commun. 113, 427 2000CrossRefGoogle Scholar
21Weinberger, M.B., Cumberland, R.W., Levine, J.B., Conil, N., Shahar, A., Kaner, R.B., Tolbert, S.H.Kavner, A.: Strength of osmium diboride under high pressure and nonhydrostatic stress. (unpublished)Google Scholar
22Tanaka, I., Oba, F., Sekine, T., Ito, E., Kubo, A., Tasumi, K., Adachi, H.Yamamoto, T.: Hardness of cubic silicon nitride. J. Mater. Res. 17, 731 2002CrossRefGoogle Scholar
23Scholz, T., Schneider, G.A., Munoz-Saldana, J.Swain, M.V.: Fracture toughness from submicron derived indentation cracks. Appl. Phys. Lett. 84, 3055 2004CrossRefGoogle Scholar
24Kucheyev, S.O., Bradby, J.E., Williams, J.S., Jagadish, C.Swain, M.V.: Mechanical deformation of single-crystal ZnO. Appl. Phys. Lett. 80, 956 2002CrossRefGoogle Scholar
25Liu, D., Chelf, M.White, K.W.: Indentation plasticity of barium titanate single crystals: Dislocation influence on ferroelectric domain walls. Acta Mater. 54, 4525 2006CrossRefGoogle Scholar