Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T00:57:36.125Z Has data issue: false hasContentIssue false

Biometric identification of capillariid eggs from archaeological sites in Patagonia

Published online by Cambridge University Press:  07 February 2013

V. Taglioretti*
Affiliation:
Laboratorio de Paleoparasitología y Arqueología Contextual, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
M.H. Fugassa
Affiliation:
Laboratorio de Paleoparasitología y Arqueología Contextual, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
M.O. Beltrame
Affiliation:
Laboratorio de Paleoparasitología y Arqueología Contextual, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
N.H. Sardella
Affiliation:
Laboratorio de Paleoparasitología y Arqueología Contextual, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina

Abstract

Numerous eggs of capillariid nematodes have been found in coprolites from a wide range of hosts and in raptor pellets in archaeological samples from Patagonia. The structure and sculpture of the eggshell of these nematodes and their biometry are commonly used for identification. The aim of this study was to determine whether eggs of the genus Calodium with similar morphology, found in different archaeological samples from Patagonia, belong to the same species. For this purpose, capillariid eggs (N= 843) with thick walls and radial striations were studied by permutational multivariate analysis of variance (PERMANOVA). Eggs exhibiting similar shape and structure also showed similar biometry, regardless of the zoological origin of coprolites (P= 0.84), host diet (P= 0.19), character of the archaeological sites (P= 0.67) and chronology (P= 0.66). Thus, they were attributed to the same species. We suggest that an unidentified zoonotic species of the genus Calodium occurred in the digestive tract of a wide range of hosts in Patagonia during the Holocene and that both human and animal populations were exposed to this parasite during the Holocene in the study area.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M.J. (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 3246.Google Scholar
Anderson, M.J. (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245253.Google Scholar
Anderson, R.C. (2000) Nematode parasites of vertebrates. Their development and transmission. 650 pp. Wallingford, Oxon, UK, CAB International.Google Scholar
Beltrame, M.O., Fugassa, M.H. & Sardella, N.H. (2010) First paleoparasitological results from late Holocene in Patagonian coprolites. Journal of Parasitology 96, 648651.Google Scholar
Beltrame, M.O., Fugassa, M.H., Sardella, N.H., Civalero, M.T. & Aschero, C. (2011) Raptor pellets as zooarchaeological material for paleoparasitological studies in Patagonia. Journal of Archaeological Science 38, 15111515.Google Scholar
Benbrook, E.A. & Sloss, M.W. (1965) Parasitología clínica veterinaria. 240 pp. México, Compañía Editorial Continental.Google Scholar
Bouchet, F., Harter, S. & Le Bailly, M. (2003) The state of the art of paleoparasitological research in the Old World. Memórias do Instituto Oswaldo Cruz 98, 95101.CrossRefGoogle ScholarPubMed
Butterworth, E.W. & Beverly-Burton, M. (1980) The taxonomy of Capillaria spp. (Nematoda: Trichuroidea) in carnivorous mammals from Ontario, Canada. Systematic Parasitology 1, 211236.Google Scholar
Callen, E.O. & Cameron, T.W.M. (1960) A prehistoric diet revealed in coprolites. New Scientist 8, 3540.Google Scholar
Camargo, A.L.M., Camargo, A.S.A.J., Sousa Vera, L.J., Tarique Crispim Barreto, P., Tourinho, E.K. & Souza, M.M. (2010) Capillariasis (Trichurida, Trichinellidae, Capillaria hepatica) in the Brazilian Amazon: low pathogenicity, low infectivity and a novel mode of transmission. Parasites & Vectors 3, 11.Google Scholar
Carballo, M.C. & Navone, G.T. (2007) A new Huffmanela species (Nematoda: Trichosomoididae) parasitizing atherinid fishes in north Patagonian gulfs, Argentina. Journal of Parasitology 93, 377382.Google Scholar
Carvalho-Costa, F.A., Silva, A.G., Souza, A.H., Moreira, C.J.C., Souza, D.L., Valverde, J.G., Jaeger, L.H., Martins, P.P., Meneses, V.F., Araújo, A. & Bóia, M.N. (2009) Pseudoparasitism by Calodium hepaticum (syn. Capillaria hepatica; Hepaticola hepatica) in the Negro River, Brazilian Amazon. Transactions of the Royal Society of Tropical Medicine and Hygiene 103, 10711073.Google Scholar
Confalonieri, U.E., Ribeiro, F.B., Ferreira, L.F. & Araújo, A. (1985) The experimental approach to paleoparasitology: desiccation of Trichuris trichiura eggs. Paleopathology newsletter 51, 911.Google ScholarPubMed
Cross, H.J. (1992) Intestinal capillariasis. Clinical Microbiology Reviews 5, 120129.Google Scholar
Dittmar, K. & Teejen, W.R. (2003) The presence of Fasciola hepatica (liverfluke) in human and cattle from a 4,500 years old archaeological site in the Saale-Unstrut Valley, Germany. Memórias do Instituto Oswaldo Cruz 98, 141144.Google Scholar
Farhang-Azad, A. (1977) Ecology of Capillaria hepatica (Bancroft 1893) (Nematoda). II. Egg-releasing mechanisms and transmission. Journal of Parasitology 63, 701706.Google Scholar
Fernandes, A., Ferreira, L.F., Gonçalves, M.L.C., Bouchet, F., Klein, C.H., Iguchi, T., Sianto, L. & Araújo, A. (2005) Intestinal parasite analysis in organic sediments collected from a 16th-century Belgian archeological site. Cadernos de Saúde Pública 21, 329332.Google Scholar
Freeman, R.S. & Wright, K.A. (1960) Factors concerned with the epizootiology of Capillaria hepatica (Bancroft, 1893) (Nematoda) in a population of Peromyscus maniculatus in Algonquin Park, Canada. Journal of Parasitology 46, 373382.Google Scholar
Fuehrer, H.P., Igel, P. & Auer, H. (2011) Capillaria hepatica in man: an overview of hepatic capillariosis and spurious infections. Parasitology Research 109, 969979.Google Scholar
Fugassa, M.H. (2007) Camélidos, parásitos y ocupaciones humanas: registros paleoparasitológicos en Cerro Casa de Piedra 7 (Parque Nacional Perito Moreno, Santa Cruz, Argentina). Intersecciones en Antropología 8, 265269.Google Scholar
Fugassa, M.H. & Barberena, R. (2006) Cuevas y zoonosis antiguas: paleoparasitología del sitio Orejas de Burro 1 (Santa Cruz, Argentina). Magallania 34, 5762.Google Scholar
Fugassa, M.H., Denegri, G.M., Sardella, N.H., Araújo, A., Guichón, R.A., Martínez, A., Civalero, M.T. & Aschero, C. (2006) Paleoparasitological records in a canid coprolite from Patagonia, Argentina. Journal of Parasitology 92, 11101113.Google Scholar
Fugassa, M.H., Taglioretti, V., Gonçalves, M.L.C., Araújo, A., Sardella, N.H. & Denegri, G.M. (2008a) Capillaria spp. eggs in Patagonian archaeological sites: Statistical analysis of morphometric data. Memórias do Instituto Oswaldo Cruz 103, 104105.CrossRefGoogle Scholar
Fugassa, M.H., Sardella, N.H., Guichón, R.A., Denegri, G.M. & Araújo, A. (2008b) Paleoparasitological analysis applied to museum curated sacra from Meridional Patagonian collections. Journal of Archaeological Science 35, 14081411.Google Scholar
Fugassa, M.H., Beltrame, M.O., Bayer, M.S. & Sardella, N.H. (2009) Zoonotic parasites associated with felines from the Patagonian Holocene. Memórias do Instituto Oswaldo Cruz 104, 11771180.CrossRefGoogle ScholarPubMed
Galvão, V.A. (1981) Estudos sobre Capillaria hepatica: una avaliação do seu papel patogénico para o homen. Memórias do Instituto Oswaldo Cruz 76, 415433.Google Scholar
Li, C.D., Yang, H.L. & Wang, Y. (2010) Capillaria hepatica in China. World Journal of Gastroenterology 16, 698702.Google Scholar
Luttermoser, W. (1938) Factors influencing the development and viability of the eggs of Capillaria hepatica. American Journal of Epidemiology 27, 275289.CrossRefGoogle Scholar
Lutz, A. (1919) Schistosoma mansoni e a schistosomatose segundo observaçoes feitas no Brasil. Memórias do Instituto Oswaldo Cruz 11, 121155.Google Scholar
Moravec, F. (1982) Proposal of a new systematic arrangement of nematodes of the family Capillariidae. Folia Parasitologica 29, 119132.Google Scholar
Moravec, F. (2000) Review of capillariid and trichosomoidid nematodes from mammals in the Czech Republic and the Slovak Republic. Acta Societatis Zoologicae Bohemicae 64, 271304.Google Scholar
Moravec, F. (2001) Trichinelloid nematodes parasitic in cold-blooded vertebrates. 430 pp. Praha, Academia.Google Scholar
Moravec, F. & Fajer-Avila, E. (2000) Huffmanela mexicana n. sp. (Nematoda: Trichosomoididae) from the marine fish Spheroides annulatus in Mexico. Journal of Parasitology 86, 12291231.Google Scholar
Moravec, F., Modrý, D. & Jirků, M. (2007) A new species of Paracapillaria (Nematoda: Capillariidae) from the intestine of the toad Duttaphrynus melanostictus (Anura) from the Malayan peninsula. Journal of Parasitology 93, 907909.Google Scholar
Potvin, P.J. & Schutz, R.W. (2000) Statistical power for the two-factor repeated measures ANOVA. Behavior Research Methods, Instruments, and Computers 32, 347356.Google Scholar
Poulin, R., Krasnov, R.B. & Moran, S. (2006) Patterns of host specificity in parasites exploiting small mammals. pp. 233256in Morand, S., Krasnov, B.R. & Poulin, R. (Eds) Micromammals and macroparasites. From evolutionary ecology to management. Tokyo, Springer-Verlag.CrossRefGoogle Scholar
R Development Core Team (2011) R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing.Google Scholar
Read, C.P. (1949) Studies on North American helminths of the genus Capillaria Zeder, 1800 (Nematoda): I. Capillarids from mammals. Journal of Parasitology 35, 223230.Google Scholar
San Martín-Órdenes, A.J. (2009) Diversidad de Trichinelloidea (Enoplea, Nematoda) en Chile y su implicancia en salud humana, animal y ecosistémica. Lundiana 10, 1952.Google Scholar
Santos, C.P., Moravec, F. & Venturieri, R. (2008) Capillostrongyloides arapaimae sp. n. (Nematoda: Capillariidae), a new intestinal parasite of the arapaima Arapaima gigas from the Brazilian Amazon. Memórias do Instituto Oswaldo Cruz 103, 392395.Google Scholar
Sardella, N.H., Fugassa, M.H., Rindel, D.D. & Goñi, R.A. (2010) Paleoparasitological results for rodent coprolites from Santa Cruz Province, Argentina. Memórias do Instituto Oswaldo Cruz 105, 3340.Google Scholar
Spratt, D.M. (2006) Description of capillariid nematodes (Trichinelloidea: Capillariidae) parasitic in Australian marsupials and rodents. Zootaxa 1348, 182.Google Scholar
Taglioretti, V., Fugassa, M.H. & Sardella, N.H. (2009) Paleoparasitología de camélidos de Patagonia: nuevos datos. Acta bioquímica clínica latinoamericana 1, 148.Google Scholar
Traversa, D., Di Cesare, A., Lia, R.P., Castagna, G., Meloni, S., Heine, J., Strube, K., Milillo, P., Otranto, D., Meckes, O. & Schaper, R. (2011) New insights into morphological and biological features of Capillaria aerophila (Trichocephalida, Trichuridae). Parasitology Research 109, 97104.Google Scholar
Zhu, X., Spratt, D.M., Beveridge, I., Haycock, P. & Gasser, R.B. (2000) Mitochondrial DNA polymorphism within and among species of Capillaria sensu lato from Australian marsupials and rodents. International Journal for Parasitology 30, 933938.CrossRefGoogle ScholarPubMed