Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-r9chl Total loading time: 2.003 Render date: 2021-06-21T12:32:01.058Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Short-wavelength local instabilities of a circular Couette flow with radial temperature gradient

Published online by Cambridge University Press:  29 March 2017

Oleg N. Kirillov
Affiliation:
Northumbria University, Newcastle upon Tyne, NE1 8ST, UK Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina 8, Moscow 119991, Russia
Innocent Mutabazi
Affiliation:
Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294, CNRS-Université du Havre, Normandie Université, B.P. 540, 76058 Le Havre CEDEX, France
Corresponding

Abstract

We perform a linearized local stability analysis for short-wavelength perturbations of a circular Couette flow with a radial temperature gradient. Axisymmetric and non-axisymmetric perturbations are considered and both the thermal diffusivity and the kinematic viscosity of the fluid are taken into account. The effect of asymmetry of the heating both on centrifugally unstable flows and on the onset of instabilities of centrifugally stable flows, including flows with a Keplerian shear profile, is thoroughly investigated. It is found that an inward temperature gradient destabilizes the Rayleigh-stable flow either via Hopf bifurcation if the liquid is a very good heat conductor or via steady state bifurcation if viscosity prevails over the thermal conductance.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Acheson, D. J. & Gibbons, M. P. 1978 On the instability of toroidal magnetic fields and differential rotation in stars. Phil. Trans. R. Soc. Lond. A 289 (1363), 459500.CrossRefGoogle Scholar
Ali, M. & Weidman, P. D. 1990 On the stability of circular Couette flow with radial heating. J. Fluid Mech. 220, 5384.CrossRefGoogle Scholar
Allilueva, A. I. & Shafarevich, A. I. 2015 Asymptotic solutions of linearized Navier–Stokes equations localized in small neighborhoods of curves and surfaces. Russ. J. Math. Phys. 22 (4), 421436.CrossRefGoogle Scholar
Auer, M., Busse, F. H. & Clever, R. M. 1995 Three-dimensional convection driven by centrifugal buoyancy. J. Fluid Mech. 301, 371382.CrossRefGoogle Scholar
Balbus, S. A. & Potter, W. J. 2016 Surprises in astrophysical gasdynamics. Rep. Prog. Phys. 79, 066901.CrossRefGoogle ScholarPubMed
Bilharz, H. 1944 Bemerkung zu einem Satze von Hurwitz. Z. Angew. Math. Mech. 24 (2), 7782.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.Google Scholar
Child, A., Kersalé, E. & Hollerbach, R. 2015 Nonaxisymmetric linear instability of cylindrical magnetohydrodynamic Taylor–Couette flow. Phys. Rev. E 92, 033011.Google ScholarPubMed
Dobrokhotov, S. Yu. & Shafarevich, A. I. 1992 Parametrix and the asymptotics of localized solutions of the Navier–Stokes equations in R3, linearized on a smooth flow. Math. Notes 51 (1), 4754.CrossRefGoogle Scholar
Dubrulle, B., Dauchot, O., Daviaud, F., Longaretti, P.-Y., Richard, D. & Zahn, J.-P. 2005 Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Phys. Fluids 17, 095103.CrossRefGoogle Scholar
Eckhardt, B. & Yao, D. 1995 Local stability analysis along Lagrangian paths. Chaos, Solitons Fractals 5 (11), 20732088.CrossRefGoogle Scholar
Eckhoff, K. S. 1981 On stability for symmetric hyperbolic systems, I. J. Differ. Equ. 40 (1), 94115.CrossRefGoogle Scholar
Economides, D. G. & Moir, G. 1980 Taylor vortices and the Goldreich–Schubert instability. Geophys. Astrophys. Fluid Dyn. 16 (1), 299317.CrossRefGoogle Scholar
Friedlander, S. & Vishik, M. M. 1995 On stability and instability criteria for magnetohydrodynamics. Chaos 5 (2), 416423.CrossRefGoogle ScholarPubMed
Kirillov, O. N. 2013 Nonconservative Stability Problems of Modern Physics. De Gruyter.CrossRefGoogle Scholar
Kirillov, O. N. 2016 Singular diffusionless limits of double-diffusive instabilities in magnetohy-drodynamics. Proc. R. Soc. Lond. A (submitted), arXiv:1610.06970v1.Google Scholar
Kirillov, O. N. & Stefani, F. 2013 Extending the range of the inductionless magnetorotational instability. Phys. Rev. Lett. 111, 061103.CrossRefGoogle ScholarPubMed
Kirillov, O. N., Stefani, F. & Fukumoto, Y. 2014 Local instabilities in magnetized rotational flows: a short-wavelength approach. J. Fluid Mech. 760, 591633.CrossRefGoogle Scholar
Kirillov, O. N. & Verhulst, F. 2010 Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella? Z. Angew. Math. Mech. 90 (6), 462488.CrossRefGoogle Scholar
Kucherenko, V. V. & Kryvko, A. 2013 Interaction of Alfvén waves in the linearized system of magnetohydrodynamics for an incompressible ideal fluid. Russ. J. Math. Phys. 20 (1), 5667.CrossRefGoogle Scholar
Lappa, M. 2012 Rotating Thermal Flows in Natural and Industrial Processes. Wiley.CrossRefGoogle Scholar
Lifschitz, A. 1991 Short wavelength instabilities of incompressible three-dimensional flows and generation of vorticity. Phys. Lett. A 157 (8), 481487.CrossRefGoogle Scholar
Lifshitz, A. E. 1987 Continuous spectrum in general toroidal systems (ballooning and Alfvén modes). Phys. Lett. A 122 (6), 350356.CrossRefGoogle Scholar
Lifschitz, A. & Hameiri, E. 1991 Local stability conditions in fluid dynamics. Phys. Fluids A 3 (11), 26442651.CrossRefGoogle Scholar
Lifschitz, A. & Hameiri, E. 1993 Localized instabilities of vortex rings with swirl. Commun. Pure Appl. Maths 46 (10), 13791408.CrossRefGoogle Scholar
Lifschitz, A., Suters, W. H. & Beale, J. T. 1996 The onset of instability in exact vortex rings with swirl. J. Comput. Phys. 129 (1), 829.CrossRefGoogle Scholar
Lopez, J. M., Marques, F. & Avila, M. 2013 The Boussinesq approximation in rapidly rotating flows. J. Fluid Mech. 737, 5677.CrossRefGoogle Scholar
Marcus, P. S., Pei, S., Jiang, C.-H. & Hassanzadeh, P. 2013 Three-dimensional vortices generated by self-replication in stably stratified rotating shear flows. Phys. Rev. Lett. 111, 084501.CrossRefGoogle ScholarPubMed
Maslov, V. P. 1986 Coherent structures, resonances, and asymptotic non-uniqueness for Navier–Stokes equations with large Reynolds numbers. Russ. Math. Surveys 41 (6), 2342.CrossRefGoogle Scholar
Meyer, A., Yoshikawa, H. N. & Mutabazi, I. 2015 Effect of the radial buoyancy on a circular Couette flow. Phys. Fluids 27 (11), 114104.CrossRefGoogle Scholar
Mutabazi, I. & Bahloul, A. 2002 Stability analysis of a vertical curved channel flow with a radial temperature gradient. Theor. Comput. Fluid Dyn. 16 (1), 7990.CrossRefGoogle Scholar
Nelson, R. P., Gressel, O. & Umurhan, O. M. 2013 Linear and non-linear evolution of the vertical shear instability in accretion discs. Mon. Not. R. Astron. Soc. 435 (3), 26102632.CrossRefGoogle Scholar
Stefani, F. & Kirillov, O. N. 2015 Destabilization of rotating flows with positive shear by azimuthal magnetic fields. Phys. Rev. E 92, 051001.Google ScholarPubMed
Tuckerman, L. S. 2001 Thermosolutal and binary fluid convection as a 2 × 2 matrix problem. Physica D 156, 325363.Google Scholar
Urpin, V. & Brandenburg, A. 1998 Magnetic and vertical shear instabilities in accretion discs. Mon. Not. R. Astron. Soc. 294 (3), 399406.CrossRefGoogle Scholar
Vinberg, E. B. 2003 A Course in Algebra. American Mathematical Society.CrossRefGoogle Scholar
Yoshikawa, H. N., Nagata, M. & Mutabazi, I. 2013 Instability of the vertical annular flow with a radial heating and rotating inner cylinder. Phys. Fluids 25 (11), 114104.CrossRefGoogle Scholar
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Short-wavelength local instabilities of a circular Couette flow with radial temperature gradient
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Short-wavelength local instabilities of a circular Couette flow with radial temperature gradient
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Short-wavelength local instabilities of a circular Couette flow with radial temperature gradient
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *