Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-p4zth Total loading time: 16.102 Render date: 2021-08-05T15:47:20.493Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Experimental and numerical investigation of flames stabilised behind rotating cylinders: interaction of flames with a moving wall

Published online by Cambridge University Press:  17 January 2017

P. Xavier
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT) – Université de Toulouse, CNRS-INPT-UPS, 31400 Toulouse, France
A. Ghani
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT) – Université de Toulouse, CNRS-INPT-UPS, 31400 Toulouse, France
D. Mejia
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT) – Université de Toulouse, CNRS-INPT-UPS, 31400 Toulouse, France
M. Miguel-Brebion
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT) – Université de Toulouse, CNRS-INPT-UPS, 31400 Toulouse, France
M. Bauerheim
Affiliation:
CERFACS, CFD Team, 42 avenue Coriolis, 31057 Toulouse, CEDEX 01, France
L. Selle
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT) – Université de Toulouse, CNRS-INPT-UPS, 31400 Toulouse, France
T. Poinsot
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT) – Université de Toulouse, CNRS-INPT-UPS, 31400 Toulouse, France
Corresponding
E-mail address:

Abstract

Steady methane/air laminar premixed flames stabilised on a cylindrical bluff body subjected to a continuous rotation are analysed using joint direct numerical simulations (DNS) and experiments. DNS are carried out using a 19 species scheme for methane/air combustion and a lumped model to predict the cylinder temperature. Rotation of the cylinder induces a symmetry breaking of the flow, and leads to two distinct flame branches in the wake of the cylinder. DNS are validated against experiments in terms of flame topologies and velocity fields. DNS are then used to analyse flame structures and thermal effects. The location and structure of the two flames are differently modified by rotation and heat transfer: a superadiabatic flame branch stabilises close to the hot cylinder and burns preheated fresh gases while a subadiabatic branch is quenched over a large zone and anchors far downstream of the cylinder. Local flame structures are shown to be controlled to first order by the local enthalpy defect or excess due to heat transfer between the cylinder and the flow. An analysis of the local wall heat flux around the cylinder shows that, for low rotation speeds, the superadiabatic flame branch contributes to wall heat fluxes that considerably exceed typical values found for classical flame/wall interactions. However, for high rotation speeds, fluxes decrease because the cylinder is surrounded by a layer of burned gases that dilute incoming reactants and shield it from the flame.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badr, H. M., Coutanceau, M., Dennis, S. C. R. & Menard, C. 1990 Unsteady flow past a rotating circular cylinder at Reynolds numbers 103 and 104 . J. Fluid Mech. 220, 459484.CrossRefGoogle Scholar
Ballal, D. R. & Lefebvre, A. H. 1979 Weak extinction limits of turbulent flowing mixtures. Trans. ASME J. Engng Gas Turbines Power 101, 343348.CrossRefGoogle Scholar
Baum, M., Poinsot, T. J., Haworth, D. C. & Darabiha, N. 1994 Progress in knowledge of flamelet structure and extinction. J. Fluid Mech. 280, 132.CrossRefGoogle Scholar
Bonhomme, A., Selle, L. & Poinsot, T. 2013 Curvature and confinement effects for flame speed measurements in laminar spherical and cylindrical flames. Combust. Flame 160, 12081214.CrossRefGoogle Scholar
Bourguet, R. & Jacono, D. L. 2014 Flow-induced vibrations of a rotating cylinder. J. Fluid Mech. 740, 342380.CrossRefGoogle Scholar
Bruneaux, G., Poinsot, T. & Ferziger, J. H. 1997 Premixed flame wall interaction in a turbulent channel flow: budget for the flame surface density evolution equation and modelling. J. Fluid Mech. 349, 191219.CrossRefGoogle Scholar
Candel, S. 2002 Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29 (1), 128.CrossRefGoogle Scholar
Cantwell, B. & Coles, D. 1983 An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321374.CrossRefGoogle Scholar
Cattafesta, L. N. & Sheplak, M. 2011 Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247272.CrossRefGoogle Scholar
Chen, R. H., Driscoll, J. F., Kelly, J., Namazian, M. & Schefer, R. W. 1990 A comparison of bluff-body and swirl-stabilized flames. Combust. Sci. Technol. 71, 197217.CrossRefGoogle Scholar
Chen, Y. C., Chang, C. C., Pan, K. L. & Yang, J. T. 1998 Flame lift-off and stabilization mechanisms of nonpremixed jet flames on a bluff-body burner. Combust. Flame 115, 5165.CrossRefGoogle Scholar
Chen, Z. 2011 On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames. Combust. Flame 158 (2), 291300.CrossRefGoogle Scholar
Chinaud, M., Rouchon, M., Duhayon, J. F., Scheller, J., Cazin, S., Marchal, M. & Braza, M. 2014 Trailing-edge dynamics and morphing of a deformable flat plate at high Reynolds number by time-resolved PIV. J. Fluid Struct. 47, 4154.CrossRefGoogle Scholar
Cimbala, J. M., Nagib, H. M. & Roskho, A. 1988 Large structure in the far wakes of two-dimensional bluff bodies. J. Fluid Mech. 190, 265298.CrossRefGoogle Scholar
Colin, O. & Rudgyard, M. 2000 Development of high-order Taylor–Galerkin schemes for unsteady calculations. J. Comput. Phys. 162, 338371.CrossRefGoogle Scholar
Correa, S. M. & Gulati, A. 1992 Measurements and modeling of a bluff body stabilized flame. Combust. Flame 89, 195213.CrossRefGoogle Scholar
Coutanceau, M. & Menard, C. 1998 Influence of rotation on the near-wake development behind an impulsively started circular cylinder. J. Fluid Mech. 158, 399446.CrossRefGoogle Scholar
Culick, F. E. C. 1988 Combustion instabilities in liquid-fueled propulsion systems. In AGARD Conference Proceedings, no. 450.Google Scholar
Dong, S., Triantafyllou, G. S. & Karniadakis, G. E. 2008 Elimination of vortex streets in bluff-body flows. Phys. Rev. Lett. 100, 204501.CrossRefGoogle ScholarPubMed
Dowdy, D. R., Smith, D. B., Taylor, S. C. & Williams, A. 1991 The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixtures. In Symp. (Int.) on Combustion, vol. 23, pp. 325332. Elsevier.Google Scholar
Duchaine, F., Boudy, F., Durox, D. & Poinsot, T. 2011 Sensitivity analysis of transfer functions of laminar flames. Combust. Flame 158 (12), 23842394.CrossRefGoogle Scholar
Ducruix, S., Schuller, T., Durox, D. & Candel, S. 2003 Combustion dynamics and instabilities: elementary coupling and driving mechanisms. J. Prop. Power 19, 722734.Google Scholar
Ezekoye, O., Greif, R. & Sawyer, R. F. 1992 Increased surface temperature effects on wall heat transfer during unsteady flame quenching. In Symp. (Int.) on Combustion, vol. 24, pp. 14651472. Elsevier.Google Scholar
Gelzer, A. & Amitay, M. 2002 synthetic jets. Annu. Rev. Fluid Mech. 34, 503529.CrossRefGoogle Scholar
Ghani, A., Poinsot, T., Gicquel, L. & Staffelbach, G. 2015 LES of longitudinal and transverse self-exrefd combustion instabilities in a bluff-body stabilized turbulent premixed flame. Combust. Flame 162, 40754083.CrossRefGoogle Scholar
Glassman, I. 1996 Combustion. Academic.Google Scholar
Godoy-Diana, R., Marais, C., Aider, J.-L. & Wesfreid, J. E. 2009 A model for the symmetry breaking of the reverse Benard von Karman vortex street produced by a flapping foil. J. Fluid Mech. 622, 2332.CrossRefGoogle Scholar
Goodwin, D. G.2002. Cantera C++ users guide. Tech. Rep. California Institute of Technology.Google Scholar
Groot, G. R. A. & De Goey, L. P. H. 2002 A computational study on propagating spherical and cylindrical premixed flames. Proc. Combust. Inst. 29 (2), 14451451.CrossRefGoogle Scholar
Gruber, A., Sankaran, R., Hawkes, E. R. & Chen, J. H. 2010 Turbulent flame-wall interaction: a direct numercial simulation study. J. Fluid Mech. 658, 532.CrossRefGoogle Scholar
Huang, W. M., Vosen, S. R. & Greif, R. 1988 Heat transfer during laminar flame quenching: effect of fuels. In Symp. (Int.) on Combustion, vol. 21, pp. 18531860. Elsevier.Google Scholar
Huang, Y. & Yang, V. 2009 Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35, 293364.CrossRefGoogle Scholar
Jarosinski, J. 1988 A survey of recent studies on flame extinction. Combust. Sci. Technol. 12, 88116.Google Scholar
Kedia, K. S., Altay, H. M. & Ghoniem, A. F. 2011 Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics. Proc. Combust. Inst. 33, 11131120.CrossRefGoogle Scholar
Kedia, S. K. & Ghoniem, A. F. 2013 An analytical model for the prediction of the dynamic response of premixed flames stabilized on a heat-conducting perforated plate. Proc. Combust. Inst. 34 (1), 921928.CrossRefGoogle Scholar
Kedia, S. K. & Ghoniem, A. F. 2015 The blow-off mechanism of a bluff-body stabilized laminar premixed flame. Combust. Flame 162 (4), 13041315.CrossRefGoogle Scholar
Kelso, R., Lim, T. & Perry, A. 1996 An experimental study of round jets in cross-flow. J. Fluid Mech. 306, 111144.CrossRefGoogle Scholar
Kitano, M., Kobayashi, H. & Otsuka, Y. 1989 A study of cylindrical premixed flames with heat loss. Combust. Flame 76, 89105.CrossRefGoogle Scholar
Kwong, A. Q., Geraedts, B. D. & Steinberg, A. M. 2016 Coupled dynamics of lift-off and precessing vortex core formation in swirl flames. Combust. Flame 168, 228239.Google Scholar
Labarrere, L., Poinsot, T., Dauptain, A., Duchaine, F., Bellenoue, M. & Boust, B. 2016 Experimental and numerical study of cyclic variations in a constant volume combustion chamber. Combust. Flame 172, 4961.CrossRefGoogle Scholar
Leweke, T., Provansal, M. & Boyer, L. 1993 Stability of vortex shedding modes in the wake of a ring at low Reynolds numbers. Phys. Rev. Lett. 71, 34693473.CrossRefGoogle ScholarPubMed
Lieuwen, T. & Yang, V. 2005 Combustion instabilities in gas turbine engines. Operational experience, fundamental mechanisms and modeling. In Prog. in Astronautics and Aeronautics AIAA, vol. 210.Google Scholar
Lieuwen, T. C. 2012 Unsteady Combustor Physics. Cambridge University Press.CrossRefGoogle Scholar
Longwell, J. P. 1952 Flame stabilization by bluff bodies and turbulent flames in ducts. Proc. Combust. Inst. 4, 9797.Google Scholar
Lu, J. H., Ezekoye, O., Greif, R. & Sawyer, R. F. 1991 Unsteady heat transfer during side wall quenching of a laminar flame. In Symp. (Int.) on Combustion, vol. 23, pp. 441446. Elsevier.Google Scholar
Lu, T. & Law, C. K. 2008 A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with no chemistry. Combust. Flame 154, 761774.CrossRefGoogle Scholar
Masri, A. R., Dally, B. B., Barlow, R. S. & Carter, C. D. 1994 The structure of the recirculation zone of a bluff-body combustor. In Symp. (Int.) on Combustion, vol. 25, pp. 13011308. Elsevier.Google Scholar
Mejia, D., Bauerheim, M., Xavier, P., Ferret, B., Selle, L. & Poinsot, T. 2016 Three-dimensionality in the wake of a rotating cylinder in a uniform flow. Proc. Combust. Inst. 717, 129.Google Scholar
Mejia, D., Selle, L., Bazile, R. & Poinsot, T. 2015 Wall-temperature effects on flame response to acoustic oscillations. Proc. Combust. Inst. 35, 32013208.CrossRefGoogle Scholar
Michaels, D. & Ghoniem, A. F. 2016 Impact of the bluff-body material on the flame leading edge structure and flame-flow interaction of premixed CH4/air flames. Combust. Flame 172, 6278.CrossRefGoogle Scholar
Miguel-Brebion, M., Mejia, D., Xavier, P., Duchaine, F., Bedat, B., Selle, L. & Poinsot, T. 2016 Joint experimental and numerical study of the influence of flame holder temperature on the stabilization of a laminar methane flame on a cylinder. Combust. Flame 172, 153161.CrossRefGoogle Scholar
Mittal, R. & Balachandar, S. 1995 Generation of streamwise vortical structures in bluff body wakes. Phys. Rev. Lett. 75, 13001304.CrossRefGoogle Scholar
Modi, V. J. 1997 Moving surface boundary-layer control: a review. J. Fluids Struct. 11, 627663.CrossRefGoogle Scholar
Monkewitz, P. A. 1988 A note on vortex shedding from axisymmetric bluff bodies. J. Fluid Mech. 192, 561575.CrossRefGoogle Scholar
Moreau, E. 2007 Airflow control by non-thermal plasma actuators. J. Phys. D: Appl. Phys. 40, 605636.CrossRefGoogle Scholar
Moureau, V., Lartigue, G., Sommerer, Y., angelberger, C., Colin, C. & Poinsot, T. 2005 Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids. J. Comput. Phys. 202, 710736.CrossRefGoogle Scholar
Nair, S. & Lieuwen, T. 2007 Near-blowoff dynamics of a bluff-body stabilized flames. J. Prop. Power 2, 421428.CrossRefGoogle Scholar
Penner, S. S. & Williams, F. 1957 Recent studies on flame stabilization of premixed turbulent gases. Appl. Mech. Rev. 10, 229237.Google Scholar
Plaschko, P., Berger, E. & Peralta-Fabi, R. 1993 Periodic flow in the near wake of straight circular cylinders. Phys. Fluids 5, 17181725.CrossRefGoogle Scholar
Plee, S. L. & Mellor, A. M. 1979 Characteristic time correlation for lean blow off of bluffbody stabilized flames. Combust. Flame 35, 6180.CrossRefGoogle Scholar
Poinsot, T. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104129.CrossRefGoogle Scholar
Poinsot, T. & Veynante, D. 2011 Theoretical and Numerical Combustion, 3rd edn. Available at: www.cerfacs.fr/elearning.Google Scholar
Poinsot, T. J., Haworth, D. C. & Bruneaux, G. 1993 Direct simulation and modeling flame-wall interaction for premixed turbulent combustion. Combust. Flame 95, 118132.CrossRefGoogle Scholar
Poinsot, T. J., Trouve, A., Veynante, D. P., Candel, S. M. & Esposito, E. J. 1987 Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265292.CrossRefGoogle Scholar
Popp, P. & Baum, M. 1997 An analysis of wall heat fluxes, reaction mechanisms and unburnt hydrocarbons during the head-on quenching of a laminar flame methane flame. Combust. Flame 108, 327348.CrossRefGoogle Scholar
Popp, P., Smooke, M. & Baum, M. 1996 Heterogeneous/homogeneous reactions and trasport coupling during flame-wall interaction. Proc. Combust. Inst. 26, 26932700.CrossRefGoogle Scholar
Prasad, A. & Williamson, C. H. K. 1997 The instability of the shear layer separating from a bluff body. J. Fluid Mech. 333, 375402.CrossRefGoogle Scholar
Rao, A., Leontini, J., Thompson, M. C. & Hourigan, K. 2013 Three-dimensionality in the wake of a rotating cylinder in a uniform flow. J. Fluid Mech. 717, 129.CrossRefGoogle Scholar
Rao, A., Thompson, M. C. & Hourigan, K. 2016 A universal three-dimensional instability of the wakes of two-dimensional bluff bodies. J. Fluid Mech. 792, 5066.CrossRefGoogle Scholar
Rayleigh, L. 1878 The explanation of certain acoustic phenomena. Nature 18, 319321.CrossRefGoogle Scholar
Reynst, F. H. 1961 Pulsating Combustion (ed. Thring, M.), Pergamon.Google Scholar
Rhee, C., Talbot, L. & Sethian, J. 1995 Dynamic behavior of premixed turbulent v-flame. J. Fluid Mech. 300, 87115.CrossRefGoogle Scholar
Roshko, A. 1993 Perspectives on bluff body aerodynamics. J. Wind Engng Ind. Aerodyn. 49, 79100.CrossRefGoogle Scholar
Sahin, M. & Owens, R. G. 2004 A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined circular cylinder. Phys. Fluids 16, 13051320.CrossRefGoogle Scholar
Sanquer, S., Bruel, P. & Deshaies, B. 1998 Some specific characteristics of turbulence in the reactive wakes of bluff bodies. AIAA J. 6, 9941001.Google Scholar
Schonfeld, T. & Rudgyard, M. 1999 Steady and unsteady flows simulations using the hybrid flow solver avbp. AIAA J. 37, 13781385.CrossRefGoogle Scholar
Schumm, M., Berger, E. & Monkewitz, P. A. 1994 Self-exrefd oscillations in the wake of two-dimensional bluff bodies and their control. J. Fluid Mech. 271, 1753.CrossRefGoogle Scholar
Shanbhogue, S. J., Husain, S. & Lieuwen, T. 1997 Lean blowoff of bluff body stabilized flames: scaling and dynamics. Prog. Energy Combust. Sci. 333, 375402.Google Scholar
Shanbhogue, S. J., Sanusi, Y. S., Taamallah, S., Habib, M. A., Mokheimer, E. M. A. & Ghoniem, A. F. 2016 Flame macrostructures, combustion instability and extinction strain scaling in swirl-stabilized premixed CH4/H2 combustion. Combust. Flame 163, 494507.CrossRefGoogle Scholar
Smith, C., Nickolaus, D., Leach, T., Kiel, B. & Garwick, K. 2007 LES blowout analysis of premixed flow past V-gutter flameholder. In 45th AIAA Aerospace Sciences Meeting and Exhibit, vol. 162. pp. 2007–170. AIAA.Google Scholar
Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C. Jr et al. 1999 Gri-mech 3.0. Tech. Rep. University of Berkeley.Google Scholar
Stohr, M., Boxx, I., Carter, C. D. & Meier, W. 2012 Experimental study of vortex-flame interaction in a gas turbine model combustor. Combust. Flame 159, 26382649.CrossRefGoogle Scholar
Terhaar, S., Oberleithner, K. & Paschereit, C. O. 2015 Key parameters governing the precessing vortex core in reacting flows: an experimental and analytical study. Proc. Combust. Inst. 35, 33473354.CrossRefGoogle Scholar
Vagelopoulos, C. M. & Egolfopoulous, F. N. 1994 Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air. In Symp. (Int.) on Combustion, vol. 25, pp. 13171323. Elsevier.Google Scholar
Varea, E., Modica, V., Vandel, A. & Renou, B. 2012 Measurement of laminar burning velocity and markstein length relative to fresh gases using a new postprocessing procedure: application to laminar spherical flames for methane, ethanol and isooctane/air mixtures. Combust. Flame 159, 577590.CrossRefGoogle Scholar
Viets, H., Piatt, M. & Ball, M. 1981 Boundary layer control by unsteady vortex generation. J. Wind Engng Ind. Aerodyn. 7, 135144.CrossRefGoogle Scholar
Wichman, I. S. & Bruneaux, G. 1995 Head-on quenching of a premixed flame by a cold wall. Combust. Flame 103, 296310.CrossRefGoogle Scholar
Williams, F. A. 2000 Progress in knowledge of flamelet structure and extinction. Prog. Energy Combust. Sci. 24, 657682.CrossRefGoogle Scholar
Williams, G., Hottel, H. & Scurlock, A. 1951 Flame stabilization and propagation in high velocity gas streams. Proc. Combust. Inst. 3, 2140.Google Scholar
Williams, G. C. & Shipman, C. W. 1953 Some properties of rod stabilized flames of homogeneous gas mixtures. Proc. Combust. Inst. 4, 733742.CrossRefGoogle Scholar
Zukoski, E. E. & Marble, F. E. 1955 The role of wake transition in the process of flame stabilization on bluff bodies. In Combustion Researches and Review. Butterworths.Google Scholar
Zukoski, E. E. & Marble, F. E. 1956 Experiments concerning the mechanism of flame blowoff from bluff bodies. In Proceedings of the Gas Dynamics Symposium on Aerothermochemistry, pp. 205210. Northwestern University Press.Google Scholar
9
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Experimental and numerical investigation of flames stabilised behind rotating cylinders: interaction of flames with a moving wall
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Experimental and numerical investigation of flames stabilised behind rotating cylinders: interaction of flames with a moving wall
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Experimental and numerical investigation of flames stabilised behind rotating cylinders: interaction of flames with a moving wall
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *