Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-23T10:42:59.956Z Has data issue: false hasContentIssue false

Consanguineous marriage and associated diseases among their children and grandchildren in India: evidence from large-scale data

Published online by Cambridge University Press:  27 May 2024

Sampurna Kundu
Affiliation:
Centre of Social Medicine and Community Health, Jawaharlal Nehru University, Delhi, India
Arup Jana*
Affiliation:
Department of Population & Development, International Institute for Population Sciences, Mumbai, India
*
Corresponding author: Arup Jana; Email: arupjana0000@gmail.com

Abstract

Worldwide, more than 130 million infants are born each year and a considerable number of 13.5 million of these children have inbred parents. The present study aimed to investigate the association between parents’ consanguinity and chronic illness among their children and grandchildren in India. The nationally representative data, Longitudinal Aging Study in India, 2017–2018, Wave 1 was used for the present study. Bivariate analysis, a probit model, and propensity score estimation were employed to conduct the study. The study observed the highest prevalence of consanguinity marriage in the state of Andhra Pradesh (28%) and the lowest in Kerala (5%) among the south Indian States. People who lived in rural areas, belonged to the richer wealth quintile and Hindu religion were the significant predictors of consanguinity marriage in India. For individuals who were in consanguineous marriages, there was 0.85%, 0.84%, 1.57% 0.43%, 0.34%, and 0.14% chances of their children and grandchildren developing psychotic disorders, heart disease, hypertension stroke, cancer, and diabetes, respectively. Moreover, around 4.55% of the individuals have a history of birth defects or congenital disorders. To address the risk of complicated illnesses due to the consanguinity of marriage, medical, genetic, and social counselling services are required.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afzal, RM, Lund, AM and Skovby, F (2018) The impact of consanguinity on the frequency of inborn errors of metabolism. Molecular Genetics and Metabolism Reports 15, 610 CrossRefGoogle ScholarPubMed
al-Gazali, LI, Dawodu, AH, Sabarinathan, K and Varghese, M (1995) The profile of major congenital abnormalities in the United Arab Emirates (UAE) population. J Med Genet 32, 713.CrossRefGoogle Scholar
Anwar, S, Mourosi, JT, Arafat, Y and Hosen, MJ (2020) Genetic and reproductive consequences of consanguineous marriage in Bangladesh. PLOS ONE 15, e0241610.CrossRefGoogle ScholarPubMed
Aravinda, J (2019) Risk factors in patients with type 2 diabetes in Bengaluru: a retrospective study. World J Diabetes 10, 241248.CrossRefGoogle ScholarPubMed
Arokiasamy, P (2018) India’s escalating burden of non-communicable diseases. The Lancet Global Health 6, e12623.CrossRefGoogle ScholarPubMed
Ashraf, M, Malla, R, Chowdhary, J, Malla, M, Akhter, M, Rahman, A and Javed, S (2010) Consanguinity and pattern of congenital heart defects in down syndrome in Kashmir, India. Am J Sci Ind Res 1, 573577.Google Scholar
Banerjee, SK and Roy, TK (2002) Parental consanguinity and offspring mortality: the search for possible linkage in the Indian context. Asia-Pacific Population Journal 17, 1738.CrossRefGoogle Scholar
Becker, SO and Ichino, A (2002) Estimation of average treatment effects based on propensity scores. The Stata Journal 2, 358377.CrossRefGoogle Scholar
Bener, A and Hussain, R (2006) Consanguineous unions and child health in the state of Qatar. Paediatr Perinat Epidemiol 20, 372378.CrossRefGoogle ScholarPubMed
Bener, A, Hussain, R and Teebi, AS (2007) Consanguineous marriages and their effects on common adult diseases: studies from an endogamous population. Med Princ Pract 16, 262267.CrossRefGoogle ScholarPubMed
Bener, A, Zirie, M and Al-Rikabi, A (2005) Genetics, obesity, and environmental risk factors associated with type 2 diabetes. Croat Med J 46, 302307.Google ScholarPubMed
Bennett, RL, Motulsky, AG, Bittles, A, Hudgins, L, Uhrich, S, Doyle, DL, Silvey, K, Scott, CR, Cheng, E, McGillivray, B, Steiner, RD and Olson, D (2002) Genetic counseling and screening of consanguineous couples and their offspring: recommendations of the national society of genetic counselors. J Genet Couns 11, 97119.CrossRefGoogle ScholarPubMed
Bhagat, RB, Roy, AK, Sahoo, H (2021) Migration and Urban Transition in India A Development Perspective. London: Routledge.Google Scholar
Bittles, AH (1990) Consanguineous Marriage: Current Global Incidence and Its Relevance to Demographic Research. Michigan, U.S.A.: Population Studies Center, University of Michigan.Google Scholar
Bittles, AH (1994) The role and significance of consanguinity as a demographic variable. Population and Development Review 20, 561584.CrossRefGoogle Scholar
Bittles, A (2001) Onsanguinity and its relevance to clinical genetics. Clin Genet 60, 8998.CrossRefGoogle ScholarPubMed
Bittles, AH (2002) Endogamy, consanguinity and community genetics. J Genet 81, 9198.CrossRefGoogle ScholarPubMed
Bittles, A (2003) Consanguineous marriage and childhood health. Developmental Medicine and Child Neurology 45, 571576.CrossRefGoogle ScholarPubMed
Bittles, AH (2008) A community genetics perspective on consanguineous marriage. Community Genet 11, 324330.Google ScholarPubMed
Bittles, AH and Black, ML (2010) Evolution in health and medicine Sackler colloquium: consanguinity, human evolution, and complex diseases. PNAS 107, 17791786.CrossRefGoogle ScholarPubMed
Bittles, AH, Mason, WM, Greene, J and Rao, NA (1991) Reproductive behavior and health in consanguineous marriages. Science 252, 789794.CrossRefGoogle ScholarPubMed
Bittles, AH, Shami, SA and Rao, NA (1992) Consanguineous marriage in South Asia: incidence, causes and effects. In Roberts, DF and Bittles, AH (eds), Minority Populations: Genetics, Demography and Health. Basingstoke, Hampshire: Palgrave Macmillan UK, pp. 102117.CrossRefGoogle Scholar
Caldwell, JC, Reddy, PH and Caldwell, P (1983) The causes of marriage change in South India. Population Studies 37, 343361.CrossRefGoogle Scholar
Centerwall, WR and Centerwall, SA (1966) Consanguinity and congenital anomalies in South India: a pilot study. Indian J Med Res 54, 11601167.Google ScholarPubMed
Dronamraju, KR (1964) Mating systems of the andhra pradesh people. Cold Spring Harb Symp Quant Biol 29, 8184.CrossRefGoogle Scholar
Fareed, M and Afzal, M (2017) Genetics of consanguinity and inbreeding in health and disease. Annals of Human Biology 44, 99107.CrossRefGoogle ScholarPubMed
Haq, FU, Jalil, F, Hashmi, S, Jumani, MI, Imdad, A, Jabeen, M, Hashmi, JT, Irfan, FB, Imran, M and Atiq, M (2011) Risk factors predisposing to congenital heart defects. Ann Pediatr Cardiol 4, 117121.Google Scholar
Hussain, R and Bittles, AH (1998) The prevalence and demographic characteristics of consanguineous marriages in Pakistan. J Biosoc Sci 30, 261275.CrossRefGoogle ScholarPubMed
International Institute for Population Sciences (IIPS), National Programme for, Health Care of Elderly (NPHCE), MoHFW, and Public Health (HSPH) and The University of Southern California (USC) (2020) Longitudinal Ageing Study in India (LASI) Wave 1, 2017–18, India Report. Mumbai: International Institute for Population Sciences.Google Scholar
Islam, MM (2018) The changing pattern and determinants of declining consanguinity in Jordan during 1990–2012. Annals of Human Biology 45, 140147.CrossRefGoogle ScholarPubMed
Krishnamoorthy, S and Audinarayana, N (2001) Trends in consanguinity in South India. J Biosoc Sci 33, 185197.CrossRefGoogle ScholarPubMed
Lopez-Castroman, J (2014) Young maternal age and old paternal age induce similar risk of mental disorders in offspring. Evid Based Ment Health 17, 100.CrossRefGoogle ScholarPubMed
Maguire, A, Tseliou, F and O’Reilly, D (2018) Consanguineous marriage and the psychopathology of progeny: a population-wide data linkage study. JAMA Psychiatry 75, 438446.CrossRefGoogle ScholarPubMed
Mammen, K and Paxson, C (2000) Women’s work and economic development. The Journal of Economic Perspectives 14, 141164.CrossRefGoogle Scholar
Mobarak, AM, Kuhn, R and Peters, C (2013) Consanguinity and other marriage market effects of a wealth shock in Bangladesh. Demography 50, 18451871.CrossRefGoogle ScholarPubMed
Modell, B and Darr, A (2002) Science and society: genetic counselling and customary consanguineous marriage. Nat Rev Genet 3, 225229.CrossRefGoogle ScholarPubMed
Morrison, PJ (2011) Practical genetic counselling. Ulster Med J 80, 5354.Google Scholar
Armstrong, K (1991) Muhammad: A Western Attempt to Understand Islam. London: Gollancz.Google Scholar
Mumtaz, G, Tamim, H, Kanaan, M, Khawaja, M, Khogali, M, Wakim, G, Yunis, KA and The National Collaborative Perinatal Neonatal Network (2007) Effect of consanguinity on birth weight for gestational age in a developing country. American Journal of Epidemiology 165, 742752.CrossRefGoogle ScholarPubMed
Nilakanta Sastri, KA (2005) A History of South India: From Prehistoric Times to the Fall of Vijayanagar. Delhi: Oxford University Press.Google Scholar
Oniya, O, Neves, K, Ahmed, B and Konje, JC (2019) A review of the reproductive consequences of consanguinity. Eur J Obstet Gynecol Reprod Biol 232, 8796.CrossRefGoogle ScholarPubMed
Padmadas, SSP and Nair, PS (2002) Consanguineous unions and their effect on reproductive outcomes. The case of India. Genus 58, 113139.Google Scholar
Ramegowda, S and Ramachandra, NB (2006) Arental consanguinity increases congenital heart diseases in South India. Ann Hum Biol 33, 519528.CrossRefGoogle Scholar
Ramkumar, J, Sagayaraj, BM and Sharma, N (2018) Maternal risk factors predisposing to congenital heart disease: a study in South India. Cardiology and Angiology: An International Journal 4 17.Google Scholar
Rao, PSS and Inbaraj, SG (1977) Inbreeding in Tamil Nadu, South India. Social Biology 24, 281288.CrossRefGoogle ScholarPubMed
Rao, VV and Murty, JS (1984) Selection intensities and inbreeding among some caste groups of Andhra Pradesh, India. Soc Biol 31, 114119.Google ScholarPubMed
Reid, RM (1973) Genetic Structure of Populations. Honolulu: Univ. of Hawaii Press.Google Scholar
Rosenbaum, PR and Rubin, DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70, 4155.CrossRefGoogle Scholar
Sahoo, H, Debnath, P, Mandal, C, Nagarajan, R and Appunni, S (2021) Changing trends of consanguineous marriages in South India. Journal of Asian and African Studies 57, 209225.CrossRefGoogle Scholar
Saify, K and Saadat, M (2012) Consanguineous marriages in Afghanistan. Journal of Biosocial Science 44, 7381.CrossRefGoogle ScholarPubMed
Saxena, A, Bloom, DE, Cafiero-Fonseca, ET, Candeias, V, Adashi, E, Bloom, L, Gurfein, L, Jané-Llopis, E, Lubet, A, Mitgang, E and Carroll O’Brien, J (2014) ‘Economics of non-communicable diseases in India: the costs and returns on investment of interventions to promote healthy living and prevent, treat, and manage NCDs’, World Economic Forum, Harvard School of Public Health.Google Scholar
Schwendinger-Schreck, J (2013) Consanguinity in context. Yale J Biol Med 86, 438.Google Scholar
Sharma, SK, Kalam, MA, Ghosh, S and Roy, S (2021) Prevalence and determinants of consanguineous marriage and its types in India: evidence from the National Family Health Survey, 2015–2016. Journal of Biosocial Science 53, 566576.CrossRefGoogle ScholarPubMed
Shaw, A (2018) Consanguineous marriage and the psychopathology of the progeny of first-cousin couples. JAMA Psychiatry 75, 426427.CrossRefGoogle ScholarPubMed
Shenk, MK, Towner, MC, Voss, EA and Alam, N (2016) Consanguineous marriage, kinship ecology, and market transition. Current Anthropology 57, S16780.CrossRefGoogle Scholar
Shieh, JTC, Bittles, AH and Hudgins, L (2012) Consanguinity and the risk of congenital heart disease. Am J Med Genet A 158A, 12361241.CrossRefGoogle ScholarPubMed
Stoltenberg, C, Magnus, P, Lie, RT, Daltveit, AK and Irgens, LM (1997) Birth defects and parental consanguinity in Norway. Am J Epidemiol 145, 439448.CrossRefGoogle ScholarPubMed
Tadmouri, GO, Nair, P, Obeid, T, Al Ali, MT, Al Khaja, N and Hamamy, HA (2009) Consanguinity and reproductive health among Arabs. Reprod Health 6, 17.CrossRefGoogle ScholarPubMed
Teeuw, ME, Henneman, L, Bochdanovits, Z, Heutink, P, Kuik, DJ, Cornel, MC and Kate, LPT (2010) Do consanguineous parents of a child affected by an autosomal recessive disease have more DNA identical-by-descent than similarly-related parents with healthy offspring? Design of a case–control study. BMC Med Genet 11, 113.CrossRefGoogle ScholarPubMed
World Health Organization (2005) Preventing Chronic Diseases: a Vital Investment: WHO Global Report. Geneva: World Health Organization.Google Scholar
Ziada, AM, Al Kharusi, W and Hassan, MO (2001) Exaggerated blood pressure reactivity in the offspring of first-cousin hypertensive parents. J Sci Res Med Sci 3, 8185.Google ScholarPubMed