Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T01:43:20.454Z Has data issue: false hasContentIssue false

Screening of Florida mango fruits from germplasm for resistance to immature stages of Caribbean fruit fly

Published online by Cambridge University Press:  08 April 2017

Michael K. Hennessey
Affiliation:
United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, Florida 33158, USA
Raymond J. Schnell
Affiliation:
United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, Florida 33158, USA
Get access

Abstract

Mature fruits from 21 mango, Mangifera indica L., cultivare grown in the Miami National Clonal Germplasm Repository were examined for resistance under laboratory conditions to identify those resistant (antibiotic or antixenotic) to the eggs and larvae of the Caribbean fruit fly, Anastrepha suspensa (Leow). The bioassay consisted of artificially infesting a slice of fruit with eggs obtained from a laboratory colony and counting the adults that emerged. Emergence ranged from 26.6% (on Tobago Small Red) to 119.0% (on Sabre) of controls (on artifical diet). Tobago Small Red, Becky, Saigon Seedling, Zilate, Sandersha, 13–1, Keitt, Turpentine, Rumani, Tommy Atkins, Irwin and Peach had the highest level of resistance observed with less than 80% emergence. The most resistant cultivars are promoted to breeders and growers for production in areas under quarantine for Caribbean fruit fly.

Résumé

Des fruits mûrs de 21 cultivars de manguiers, Mangifera indica L., du Miami National Clonal Germplasm Repository ont été examinés au laboratoire pour leur résistance (antibiotique ou antixénotique) aux œufs et larves de la mouche caribéenne des fruits, Anastrepha suspensa (Loew). Le test consistait à infester artificiellement une tranche de fruit avec des œufs obtenues dans une colonie de laboratoire et à compter les adultes qui en émergaient. L'émergence variait entre 26, 6% (sur Tobago Small Red) et 119, 0% (sur Sabre) des témoins (régime artificel). Tobago Small Red, Becky, Saigon Seedling, Zilate, Sandersha, 13–1, Keitt, Turpentine, Rumani, Tommy Atkins, Irwin et Peach avaient le plus fort niveau de résistance observé avec moins de 80% d'émergence. Les cultivars les plus résistants sont recommandés aux selectionneurs et aux cultivateurs dans les régions sous quarantaine pour la mouche caribéenne des fruits.

Type
Short Communication
Copyright
Copyright © ICIPE 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, R. T., Cowley, J. M., Harte, D. S. and Frampton, E. R. (1990) Development of a maximum pest limit for fruit flies (Diptera: Tephritidae) in produce imported into New Zealand. J. Econ. Entomol. 83, 1317.CrossRefGoogle Scholar
Burditt, A. K. Jr., von Windeguth, D. and Knight, R. J., Jr. (1975) Induced infestation of fruit by the Caribbean fruit fly, Anastrepha suspensa (Loew). Proc. Florida State Hort. Soc. 87, 386390.Google Scholar
Cowley, J. M., Baker, R. T. and Harte, D. S. (1992) Definition and determination of host status for a multivoltine fruit fly (Diptera: Tephritidae) species. J. Econ. Entomol. 85, 312317.CrossRefGoogle Scholar
Hennessey, M. K. (1994) Depth of pupation of Caribbean fruit fly (Diptera: Tephritidae) in soils in the laboratory. Environ. Entomol. 23, 11191123.CrossRefGoogle Scholar
Hennessey, M. K., Knight, R. J. Jr., and Schnell, R. J. (1995a) Resistance to Caribbean fruit fly immatures in avocado cultivars. HortScience 30, 10611062.CrossRefGoogle Scholar
Hennessey, M. K., Knight, R. J. Jr. and Schnell, R. J. (1995b) Antibiosis to Caribbean fruit fly (Diptera: Tephritidae) immature stages in carambola germplasm. Florida Entomol. 78, 354357.CrossRefGoogle Scholar
Jang, E. B. and Moffitt, H. R. (1994) Systems approaches to achieving quarantine security. In Quarantine Treatments for Pests of Food Plants (Edited by Sharp, J. L. and Hallman, G. J.), pp. 225237. Westview Press, Boulder, Colorado.Google Scholar
Painter, R. H. (1941) The economic value and biologic significance of insect resistance in plants. J. Econ. Entomol. 34, 360367.CrossRefGoogle Scholar
Panda, N. and Khush, G. S. (1995) Host Plant Resistance to Insects. CAB International, Wallingford, England.Google Scholar
Reid, M. S. (1992) Maturation and maturity indices. In Postharvest Technology of Horticultural Crops (Edited by Kader, A. A.), pp. 2128. Univ. California Div. Agric, and Natural Resources Publ. 3311.Google Scholar