Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T01:22:03.242Z Has data issue: false hasContentIssue false

Monostatic continuous-wave radar integrating a tunable wideband leakage canceler for indoor tagless localization

Published online by Cambridge University Press:  22 May 2017

Marco Mercuri*
Affiliation:
Holst Centre/imec-NL, Biomedical Circuits & Sensors Department, 5656 AE Eindhoven, The Netherlands. Phone: +31 0404 020 526
Paweł Barmuta
Affiliation:
Department of Electrical Engineering, KU Leuven, 3001 Leuven, Belgium Institute of Electronic Systems, Warsaw University of Technology, 00-665 Warsaw, Poland
Ping Jack Soh
Affiliation:
Department of Electrical Engineering, KU Leuven, 3001 Leuven, Belgium School of Computer and Communication Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
Paul Leroux
Affiliation:
Department of Electrical Engineering, KU Leuven, 3001 Leuven, Belgium
Dominique Schreurs
Affiliation:
Department of Electrical Engineering, KU Leuven, 3001 Leuven, Belgium
*
Corresponding author: M. Mercuri Email: Marco.Mercuri@imec-nl.nl

Abstract

Continuous-wave (CW) radars have been recently investigated in healthcare aiming at contactless health monitoring. However, a major problem in monostatic CW architectures is represented by the unwanted leakage produced by poor isolation between transmitter and receiver, which can drastically decrease the receiver's sensitivity reducing therefore the radar dynamic range. Although this situation can be easily controlled in case of narrowband CW radar by an appropriate passive microwave design, it becomes much more complicated in case of stepped-frequency CW and frequency-modulated CW architectures that present an ultra-wideband nature. In this paper, a monostatic CW radar integrating a tunable wideband leakage canceler aiming at indoor tagless localization is presented and discussed. The use of the feedforward canceler allows a strong reduction of the unwanted leakage over the whole radar bandwidth. Experimental results demonstrate the feasibility of this approach, showing an outstanding improvement of the radar dynamic range.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Holger, H.: Commercial applications of millimeter waves: history, present status, and future trends. IEEE Trans. Microw. Theory Tech., 43 (1995), 16391653.Google Scholar
[2] Hasch, J.; Topak, E.; Schnabel, R.; Zwick, T.; Weigel, R.; Waldschmidt, C.: Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans. Microw. Theory Tech., 60 (2012), 845860.CrossRefGoogle Scholar
[3] Yanovsky, F.J.: Recent researches in the field of weather radar at the National Aviation University, in Proc. Int. Symp. on Microwaves, Radar and Remote Sensing, Kiev, Ukraine, 2008.CrossRefGoogle Scholar
[4] Mostafanezhad, I.; Boric-Lubecke, O.; Lubecke, V.A.: Coherent low IF receiver architecture for Doppler radar motion detector used in life signs monitoring, in Proc. IEEE Radio and Wireless Symp. (RWS), New Orleans, LA, USA, 2010.CrossRefGoogle Scholar
[5] Changzhi, L.; Lubecke, V.M.; Boric-Lubecke, O.; Jenshan, L.A.: Review on recent advances in Doppler radar sensors for noncontact healthcare monitoring. IEEE Trans. Microw. Theory Tech., 61 (2013), 20462060.Google Scholar
[6] Guochao, W.; Changzhan, G.; Inoue, T.; Changzhi, L.A.: Hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring. IEEE Trans. Microw. Theory Tech., 62 (2014), 28122822.Google Scholar
[7] Mercuri, M.; Schreurs, D.; Leroux, P.: SFCW microwave radar for in-door fall detection, in Proc. IEEE Topical Conf. Biomedical Wireless Technol., Santa Clara, CA, USA, 2012.CrossRefGoogle Scholar
[8] Mercuri, M. et al. : Optimized SFCW radar sensor aiming at fall detection in a real room environment, in Proc. IEEE Topical Conf. Biomedical Wireless Technol., Austin, TX, USA, 2013.CrossRefGoogle Scholar
[9] Mercuri, M.; Schreurs, D.; Leroux, P.: Optimised waveform design for radar sensor aimed at contactless health monitoring. Electron. Lett., 48 (2012), 12551257.CrossRefGoogle Scholar
[10] Mercuri, M. et al. : Analysis of an indoor biomedical radar-based system for health monitoring. IEEE Trans. Microw. Theory Tech., 61 (2013), 20612068.CrossRefGoogle Scholar
[11] Karsmakers, P.; Croonenborghs, T.; Mercuri, M.; Schreurs, D.; Leroux, P.: Automatic in-door fall detection based on microwave radar measurements, in Proc. Eur. Radar Conf., Amsterdam, The Netherlands, 2012.Google Scholar
[12] Songcheol, H.A.: Quadrature radar topology with Tx leakage canceller for 24-GHz radar applications. IEEE Trans. Microw. Theory Tech., 55 (2007), 14381444.Google Scholar
[13] Choul-Young, K.; Jeong-Geun, K.; Baek, D.; Songcheol, H.: A circularly polarized balanced radar front-end with a single antenna for 24-GHz radar applications. IEEE Trans. Microw. Theory Tech., 57 (2007), 293297.CrossRefGoogle Scholar
[14] Han Lim, L.; Won-Gyu, L.; Oh, K.-S.; Jong-Won, Y.: 24 GHz balanced Doppler radar front-end with Tx leakage canceller for antenna impedance variation and mutual coupling. IEEE Trans. Antennas Propag., 59 (2011), 44974504.Google Scholar
[15] Jeong-Geun, K.; Sangsoo, K.; Sanghoon, J.; Jae-Woo, P.; Songcheol, H.: Balanced topology to cancel Tx leakage in CW radar. IEEE Microw. Compon. Lett., 14 (2004), 443445.CrossRefGoogle Scholar
[16] Gonzalez, M.A.; Grajal, J.; Asensio, A.; Madueno, D.; Requejo, L.: A detailed study and implementation of an RPC for LFM-CW radar, in Proc. Eur. Radar Conf., Manchester, England, 2006.CrossRefGoogle Scholar
[17] Kuo, H.-C.; Wang, H.-H.; Wang, P.-C.; Chuang, H.-R.; Lin, F.-L.: 60-GHz millimeter-wave life detection system with clutter canceller for remote human vital-signal sensing, in Proc. IEEE MTT-S Int. Microwave Workshop Series on Millimeter Wave Integration Technologies, Sitges, Spain, 2011.CrossRefGoogle Scholar
[18] Hyoungsoo, K.; Sanghyun, W.; Sungyong, J.; Kil-Hoon, L.: A CMOS transmitter leakage canceller for WCDMA applications. IEEE Trans. Microw. Theory Tech., 61 (2007), 33733380.Google Scholar
[19] Jae-Young, J.; Chan-Won, P.; Kyung-Whan, Y.: A novel carrier leakage suppression front-end for UHF RFID reader. IEEE Trans. Microw. Theory Tech., 60 (2012), 14681477.Google Scholar
[20] Saavedra, C.E.; Zheng, Y.: Active quasi-circulator realisation with gain elements and slow-wave couplers. IET Microw. Antennas Propag., 1 (2007), 10201023.CrossRefGoogle Scholar
[21] Mung, S.W.Y.; Wing Shing, C.: Novel active quasi-circulator with phase compensation technique. IEEE Microw. Compon. Lett., 18 (2008), 800802.CrossRefGoogle Scholar
[22] Yang, J.-R., Kim, D.-W.; Hong, S.: Quasi-circulator for effective cancellation of transmitter leakage signals in monostatic six-port radar. Electron. Lett., 45 (2009), 10931095.CrossRefGoogle Scholar
[23] Hsien-Shun, W.; Chao-Wei, W.; Tzuang, C.-K.C.: CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at K-band. IEEE Trans. Microw. Theory Tech., 58 (2012), 20842091.Google Scholar
[24] Ding-Jie, H.; Jing-Lin, K.; Huei, W.: A 24-GHz low power and high isolation active quasi-circulator, in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Montreal, QC, Canada, 2012.CrossRefGoogle Scholar
[25] Shih-Chieh, S.; Jhih-Yu, H.; Kun-You, L.; Huei, W.: A 1.5–9.6 GHz monolithic active quasi-circulator in 0.18 µm CMOS technology. IEEE Microw. Compon. Lett., 18 (2008), 797799.Google Scholar
[26] Mastela, D.; Reindl, L.; Wiebking, L.; Kawalkiewicz, M.; Zander, T.: Angle tracking using FMCW radar based localization system (Industrial, environmental and medical applications), in Proc. Int. Conf. on Microwaves, Radar Wireless Communications MIKON, Krakow, Poland, 2006.CrossRefGoogle Scholar
[27] Yokoo, K.; Beauregard, S.; Schneider, M.: Indoor relative localization with mobile short-range radar, in Proc. IEEE Vehicular Technologies Conf., Barcelona, Spain, 2009.CrossRefGoogle Scholar
[28] Sorrentino, R.; Sbarra, E.; Urbani, L.; Montori, S.; Gatti, R.V.; Marcaccioli, L.: Accurate FMCW radar-based indoor localization system, in Proc. IEEE Int. Conf. RFID-Technologies and Applications (RFID-TA), Nice, France, 2012.CrossRefGoogle Scholar
[29] Agethen, R. et al. : 60 GHz industrial radar systems in silicon-germanium technology, in Proc. IEEE MTT-S Int. Microw. Symp., Seattle, WA, USA, 2013.CrossRefGoogle Scholar
[30] Sai, B.; Kastelein, B.: Advanced high precision radar gauge for industrial applications, in Proc. Int. Conf. Radar, Shanghai, China, 2006.CrossRefGoogle Scholar
[31] Xianzhong, C.; Fengmei, L.; Qingwen, H.; Yifang, L.: Industrial high-temperature radar and imaging technology in blast furnace burden distribution monitoring process, in Proc. Int. Conf. Electronic Measurement Instruments, Beijing, China, 2009.Google Scholar
[32] Klein, T.; Faassen, M.; Kulke, R.; Rusch, C.: A 77 GHz radar frontend in LTCC for small range, high precision industrial applications, in Proc. Europ. Microw. Conf. (EuMC), Amsterdam, The Netherlands, 2012.CrossRefGoogle Scholar
[33] Vinci, G. et al. : A six-port radar system for precise distance measurements and vibration monitoring in industrial environments, in Proc. Symp. Sensors and Measuring Systems, Nuremberg, Germany, 2014.Google Scholar
[34] Jones, D.R.: Direct Global Optimization Algorithm , Springer, US, 2001. https://link.springer.com/referenceworkentry/10.1007%2F0-306-48332-7_93 CrossRefGoogle Scholar
[35] Barmuta, P. et al. : Radar range improvement using gradient-free optimization for health care applications, in Proc. 17th International Radar Symposium, Krakow, Poland, 2016.CrossRefGoogle Scholar
[36] Soh, P.J.; Mercuri, M.; Pandey, G.; Vandenbosch, G.A.E.; Schreurs, D.M.M.-P.: Dual-band planar bowtie monopole for a fall-detection radar and telemetry system. IEEE Antennas Wireless Propag. Lett., 11 (2012), 16981701.CrossRefGoogle Scholar
[37] Mercuri, M.; Soh, P.J.; Schreurs, D.; Leroux, P.: A practical distance measurement improvement technique for a SFCW-based health monitoring radar, in Proc. of 81st ARFTG Microwave Meas. Conf., Seattle, WA, USA, 2013.CrossRefGoogle Scholar