Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-23T19:03:23.324Z Has data issue: false hasContentIssue false

Magnetic-electric dipole circularly polarized antenna with unidirectional radiation pattern with improved characteristics

Published online by Cambridge University Press:  11 December 2023

Seied Ali Banihashem
Affiliation:
Department of Electrical Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
Pejman Mohammadi*
Affiliation:
Microwave and Antenna Research Center, Urmia Branch, Islamic Azad University, Urmia, Iran
Yashar Zehforoosh
Affiliation:
Microwave and Antenna Research Center, Urmia Branch, Islamic Azad University, Urmia, Iran
*
Corresponding author: Pejman Mohammadi; Email: p.mohammadi@iaurmia.ac.ir

Abstract

In this paper, a compact unidirectional antenna consisting of a planar electric dipole and a shortened connecting element is introduced. This antenna is excited by a Γ-shaped feeding line. A wide impedance bandwidth in the frequency range of 1.3–3.3 GHz is observed in the output performance. Sufficient main lobe and low level back lobe have been introduced as other characteristics of the structure, based on radiation patterns. The antenna design process is evaluated step-by-step and using parametric study based on the antenna geometry. One of the main features of the desired antenna is the realization of circular polarization in a high percentage of the operational bandwidth 1.5–3.3 GHz. The radiation patterns of the orthogonal planes E-field and H-field along with the left-handed and right-handed circular polarization patterns for the desired antenna have been extracted and analyzed. A three-dimensional structure in the form of stacked stepped disks (SSD) is introduced to increase overall performance of antenna. There is an acceptable similarity between the E-field and H-field page patterns, which shows the accuracy of the design process. On the other hand, for studying the circular polarization, left-handed and right-handed patterns based on the main beam direction and orthogonal polarization level have acceptable performance. The maximum overall gain of the antenna in the designed frequency band is near to 13 dB.

Type
Research Paper
Copyright
© Islamic Azad University of Urmia Branch, 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mohammadi, P and Siahy, MHRT (2019) A circularly polarized wide-band magneto-electric dipole antenna with simple structure for BTS applications. AEU - International Journal of Electronics and Communications 105, 9297.CrossRefGoogle Scholar
Baba, A, Hashmi, RM and Esselle, KP (2016) Wideband gain enhancement of slot antenna using superstructure with optimised axial permittivity variation. Electronics Letters 52(4), 266268.CrossRefGoogle Scholar
Hashmi, RM, Zeb, BA and Esselle, KP (2014) Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures. IEEE Transactions on Antennas and Propagation 62(6), 29702977.CrossRefGoogle Scholar
Hashmi, RM and Esselle, KP (2016) A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products. IEEE Transactions on Antennas and Propagation 64(2), 830835.CrossRefGoogle Scholar
Wang, N, Li, J, Wei, G, Talbi, L, Zeng, Q and Xu, J (2015) Wideband Fabry Perot resonator antenna with two layers of dielectric superstrates. IEEE Antennas and Wireless Propagation Letters 14, 229232.CrossRefGoogle Scholar
Ge, Y, Sun, Z and Chen, YY (2016) A high-gain wideband low-profile Fabry-Perot resonator antenna with a conical short horn. IEEE Antennas and Wireless Propagation Letters 15, 18891892.CrossRefGoogle Scholar
Chacko, BP, Augustin, G and Denidni, TA (2016) FPC antennas: C-band point-to-point communication systems. IEEE Antennas and Propagation Magazine 58(1), 5664.CrossRefGoogle Scholar
Wu, F and Luk, KM (2017) Wideband high-gain open resonator antenna using a spherically modified, second-order cavity. IEEE Transactions on Antennas and Propagation 65(4), 21122116.CrossRefGoogle Scholar
Baba, A, Hashmi, RM and Esselle, KP (2017) Achieving a large gain-bandwidth product from a compact antenna. IEEE Transactions on Antennas and Propagation 65(7), 34373446.CrossRefGoogle Scholar
Kovaleva, M, Bulger, D, Zeb, BA and Esselle, KP (2017) Cross-entropy method for electromagnetic optimization with constraints and mixed variables. IEEE Transactions on Antennas and Propagation 65(10), 55325540.CrossRefGoogle Scholar
Khalily, M, Tafazolli, R, Xiao, P and Kishk, AA (2018) Broadband mm- wave microstrip array antenna with improved radiation characteristics for different 5G applications. IEEE Transactions on Antennas and Propagation 66(9), 46414647.CrossRefGoogle Scholar
Xu, H, Zhou, J, Wu, Q, Hong, W and Hong, W (2018) Planar wide- band circularly polarized cavity-backed stacked patch antenna array for millimeter-wave applications. IEEE Transactions on Antennas and Propagation 66(10), 51705179.CrossRefGoogle Scholar
Zhang, Y, Hong, W and Mittra, R (2019) 45 GHz wideband circularly polarized planar antenna array using inclined slots in modified short-circuited SIW. IEEE Transactions on Antennas and Propagation 67(3), 16691680.CrossRefGoogle Scholar
Zhang, L, Wu, K, Wong, SW, He, Y, Chu, P, Li, W, Wang, KX and Gao, S (2020) Wideband high-efficiency circularly polarized SIW-fed S-dipole array for millimeter-wave applications. IEEE Transactions on Antennas and Propagation 68(3), 24222427.CrossRefGoogle Scholar
Xu, J, Hong, W, Jiang, ZH, Zhang, H and Wu, K (2020) Low-profile wide-band vertically folded slotted circular patch array for Ka-band applications. IEEE Transactions on Antennas and Propagation 68(9), 68446849.CrossRefGoogle Scholar
Sedghi, T, Shafei, S, Kalami, A and Aribi, T (2015) Small monopole antenna for IEEE 802.11a and X-Bands applications using modified CBP structure. Wireless Personal Communications 80, 859865.CrossRefGoogle Scholar
Li, T and Chen, ZN (2020) Wideband sidelobe-level reduced K a-band meta surface antenna array fed by substrate-integrated gap waveguide using characteristic mode analysis. IEEE Transactions on Antennas and Propagation 68(3), 13561365.CrossRefGoogle Scholar
Yin, J, Wu, Q, Yu, C, Wang, H and Hong, W (2019) Broadband symmetrical E-shaped patch antenna with multimode resonance for 5G millimeter- wave applications. IEEE Transactions on Antennas and Propagation 67(7), 44744483.CrossRefGoogle Scholar
Heidari, F, Adelpoure, Z and Parhizgar, N (2022) Simulation of leaky wave antenna with cosecant squared pattern using genetic algorithm. Journal Communication Engineering 11(42), 6976.Google Scholar
Sun, G-H and Wong, H (2020) A planar millimeter-wave antenna array with a pillbox-distributed network. IEEE Transactions on Antennas and Propagation 68(5), 36643672.CrossRefGoogle Scholar
Rezvani, M and Mohammadi, P (2019) A dual-polarized reflector antenna with λ/2 printed dipoles for femtocell applications. Journal of Instrumentation 14, .CrossRefGoogle Scholar
Wen, D-L, Zheng, D-Z and Chu, Q-X (2017) A wideband differentially fed dual-polarized antenna with stable radiation pattern for base stations. IEEE Transactions on Antennas and Propagation 65, 22482255.CrossRefGoogle Scholar
Ni, D, Yang, S, Chen, Y and Song, Z (2017) Extremely low-profile wideband dual-polarized microstrip antenna for micro-base-station applications. International Journal of RF and Microwave Computer-Aided Engineering 27, 18.CrossRefGoogle Scholar