Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T00:45:23.289Z Has data issue: false hasContentIssue false

Experimental pressure sensing and technology of piezoelectric microwave/RF MEMS filters

Published online by Cambridge University Press:  20 June 2011

Alessandro Massaro*
Affiliation:
Center of Bio-Molecular Nanotechnology, IIT Italian Institute of Technology, Arnesano 73100, Italy.
Giuseppe Venanzoni
Affiliation:
Dipartimento of Ingegneria Biomedica Elettronica e Telecomunicazioni DIBET of Ancona, Università Politecnica delle Marche, Italy.
Marco Farina
Affiliation:
Dipartimento of Ingegneria Biomedica Elettronica e Telecomunicazioni DIBET of Ancona, Università Politecnica delle Marche, Italy.
Antonio Morini
Affiliation:
Dipartimento of Ingegneria Biomedica Elettronica e Telecomunicazioni DIBET of Ancona, Università Politecnica delle Marche, Italy.
Tullio Rozzi
Affiliation:
Dipartimento of Ingegneria Biomedica Elettronica e Telecomunicazioni DIBET of Ancona, Università Politecnica delle Marche, Italy.
Roberto Cingolani
Affiliation:
Center of Bio-Molecular Nanotechnology, IIT Italian Institute of Technology, Arnesano 73100, Italy.
Adriana Passaseo
Affiliation:
National Nanotechnology Laboratory, Institute of Nanoscience of CNR of Lecce, Italy.
Massimo De Vittorio
Affiliation:
Center of Bio-Molecular Nanotechnology, IIT Italian Institute of Technology, Arnesano 73100, Italy.
*
Corresponding author: A. Massaro Email: alessandro.massaro@iit.it

Abstract

In this work, we analyze the pressure sensing of a thin film molybdenum/aluminumnitride/molybdenum (Mo/AlN/Mo) microwave/RF MEMS filter fabricated by a simple technology. After an experimental characterization in a frequency range between 1 and 36 GHz, we focused on the piezoelectric effect due to the stress properties of the piezoelectric AlN layer by applying forces by means of weights. Variations in the bandpass region of the microwave/RF filter are observed by proving high sensitivity also for low applied weights. We check by a properly designed three-dimensional (3D) finite-element method (FEM) tool the pressure-sensing property of the proposed device. Finally, we analyze the bad gap property of a chip with central defect around 40 GHz.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Piazza, G.; Stephanou, P.J.; Pisano, A.P.: Single-chip multiple frequency ALN MEMS filters based on contour-mode piezoelectric resonators. IEEE J. Microelectromech. Syst., 16 (2007), 319328.CrossRefGoogle Scholar
[2]Piazza, G.; Stephanou, P.J.; Pisano, A.P.: Piezoelectric alluminum nitride vibrating contour mode MEMS resonators. IEEE J. Microelectromech. Syst., 15 (2007), 319328.CrossRefGoogle Scholar
[3]Piazza, G.; Stephanou, P.J.; Pisano, A.P.: Aluminum nitride contour-mode vibrating RF MEMS, in IEEE MTT-S Proc. Int. Microwave Symp. Digest, 2006, 664667.CrossRefGoogle Scholar
[4]Lakin, K.M.: Coupled resonator filters, in Proc. Ultrasonic Symp., vol. 1, 2002, 901908.Google Scholar
[5]Cady, W.G.: Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals, McGraw-Hill, New York, 1946.Google Scholar
[6]Johnson, R.A.: Mechanical Filters in Electronics, Wiley, New York, 1983.Google Scholar
[7]Mbairi, F.D.; Hesselbom, H.: Microwave bandstop filters using novel artificial periodic substrate electromagnetic band gap structure. IEEE Trans. Compon. Packag. Technol., 32 (2009), 273282.CrossRefGoogle Scholar
[8]Griol, A.; Mira, D.; Martinez, A.; Marti, J.: Multiple-frequency photonic bandgap microstrip structures based on defects insertion. Microw. Opt. Technol. Lett., 36 (2003), 479481.CrossRefGoogle Scholar
[9]Kazakevicius, V.; Brazis, R.: Surface photonic modes propagating at the normal cut of periodic metal planes, in IEEE ICTON 2009 Proc, 14.CrossRefGoogle Scholar
[10]Pozar, D.M.: Microwave Engineering, 2nd ed., Wiley, New York, 1998.Google Scholar
[11]Farina, M.; Morini, A.; Rozzi, T.: A calibration approach for the segmentation and analysis of microwave circuits. IEEE Trans. Microw. Theory Tech., 55 (2007), 21242134.CrossRefGoogle Scholar
[12]Massaro, A. et al. : 3D FEM modeling and fabrication of circular photonic crystal microcavity. IEEE Light. Technol., 26 (2008), 29602968.CrossRefGoogle Scholar