Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-12T05:58:10.437Z Has data issue: false hasContentIssue false

Evaluation of GaN-HEMT power amplifiers using BST-based components for load modulation

Published online by Cambridge University Press:  24 April 2014

Mhd. Tareq Arnous*
Affiliation:
Microwave Engineering Laboratory, Berlin Institute of Technology, Berlin, Germany. Phone: +49 30 31426814
Alex Wiens
Affiliation:
Institute for Microwave Engineering and Photonics, Technische Universitaet Darmstadt, Darmstadt, Germany
Paul Saad
Affiliation:
Microwave Engineering Laboratory, Berlin Institute of Technology, Berlin, Germany. Phone: +49 30 31426814
Sebastian Preis
Affiliation:
Microwave Engineering Laboratory, Berlin Institute of Technology, Berlin, Germany. Phone: +49 30 31426814
Zihui Zhang
Affiliation:
Microwave Engineering Laboratory, Berlin Institute of Technology, Berlin, Germany. Phone: +49 30 31426814
Rolf Jakoby
Affiliation:
Institute for Microwave Engineering and Photonics, Technische Universitaet Darmstadt, Darmstadt, Germany
Georg Boeck
Affiliation:
Microwave Engineering Laboratory, Berlin Institute of Technology, Berlin, Germany. Phone: +49 30 31426814 Ferdinand-Braun-Institut (FBH), Leibniz-Institut fuer Hoechstfrequenztechnik, Berlin, Germany
*
Corresponding author: M. T. Arnous Email: Mhd.t.arnous@tu-berlin.de

Abstract

In this paper, the concept of load-modulated power amplifiers (PAs) is studied. Two GaN-HEMT power amplifiers (PAs), targeted for high efficiency at maximum and output back-off (OBO) power levels, are designed, implemented, and tested across 1.8–2.2 GHz. The load modulation in the first design is realized by tuning the shunt capacitors in the output matching network. A novel method is employed in the second design, where barium–stronrium–titante is used for the realization of load modulation. The large-signal measurement results across the desired band show 59–70% drain efficiency at 44–44.5 dBm output power for both designs. Using the available tunable technique, the drain efficiency of the PAs is enhanced by 4–20% at 6 dB OBO across the bandwidth.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cisco Visual Networking Index: Global Mobile Data Traffic Forecast update 2011–2016 in White Paper, CISCO, (2012), online available: http://www.cisco.com/.Google Scholar
[2]Cripps, S.C.: RF Power Amplifiers for Wireless Communications, Artech House, Norwood, 2006.Google Scholar
[3]Colantonio, P.; Giannini, F.; Limiti, E.: High Efficiency RF and Microwave Solid State Power Amplifiers, Wiley, Tor Vergata, 2009.Google Scholar
[4]Misra, K.: Radio-Frequency and Microwave Communication Circuits Analysis and Design, Wiley, New York, 2002.Google Scholar
[5]Sobol, H.; Tomiyasu, K.: Milestones of microwaves. IEEE Trans. Microw. Theory Tech., 50 (3) (2002), 594611.CrossRefGoogle Scholar
[6]Raab, F.: Intermodulation distortion in Kahn-technique transmitters. IEEE Trans. Microw. Theory Tech., 44 (12) (1996), 22732278.Google Scholar
[7]Raab, F. et al. : Power amplifiers and transmitters for RF and microwave. IEEE Trans. Microw. Theory Tech., 50 (3) (2002), 814826.Google Scholar
[8]Fager, C.; Gustavsson, U.; Nemati, H.; Zirath, H.: High efficiency modulation of switched mode LDMOS power amplifiers, in Proc. 12th Int. Symp. Microwave and Optical Technology, Rome, 2007.Google Scholar
[9]Doherty, W.: A new high efficiency power amplifier for modulated waves. Proc. Inst. Radio Eng., 24 (9) (1936), 11631182.Google Scholar
[10]Brown, E.R.: RF-MEMS switches for reconfigurable integrated circuits. IEEE Trans. Microw. Theory Tech., 46 (11) (1998), 18681880.Google Scholar
[11]Nemati, H.; Fager, C.; Gustavsson, U.; Jos, R.; Zirath, H.: Design of varactor-based tunable matching networks for dynamic load modulation of high power amplifiers. IEEE Trans. Microw. Theory Tech., 57 (5) (2009), 11101118.CrossRefGoogle Scholar
[12]Nath, J. et al. : An electronically tunable microstrip bandpass filter using thin-film barium–strontium–titanate (BST) varactors. IEEE Trans. Microw. Theory Tech., 53 (9) (2005), 27072712.Google Scholar
[13]Bengtsson, O. et al. : Discrete tunable RF-power GaN-BST transistors, in Eur. Microwave Conf., (EuMW), Amsterdam, 2012.CrossRefGoogle Scholar
[14]Fu, J.; Mortazawi, A.: Improving power amplifier efficiency and linearity using a dynamically controlled tunable matching network. IEEE Trans. Microw. Theory Tech., 56 (12) (2008), 32393244.Google Scholar
[15]Arnous, M.T.; Wiens, A.; Preis, S.; Maune, H.; Bathich, K.; Nikfalazar, M.; Jakoby, R.; Boeck, G.: Load-modulated GaN power amplifier implementing tunable thick film BST components, in Eur Microwave Integrated Circuits Conf. (EuMIC), Nuremberg, 2013.Google Scholar
[16]CGH40025 data sheet. Online available: http://www.cree.com.Google Scholar
[17]Menesklou, W.; Paul, F.; Zhou, X.; Elsenheimer, H.; Binder, J.; Ivers-Tiffee, E.: Nonlinear ceramics for tunable microwave devices part I, materials properties and processing. Microsyst. Technol., 17 (2) (2011), 203211.CrossRefGoogle Scholar
[18]Maune, H.; Sazegar, M.; Zheng, Y.; Zhou, X.; Giere, A.; Scheele, P.: Nonlinear ceramics for tunable microwave devices. Microsyst. Technol., 17 (2) (2011), 213224.Google Scholar
[19]Zhou, X. et al. : Characterization of metal (Fe, Co, Ni, Cu) and fluorine codoped barium strontium titanate thick-films for microwave applications. J. Electroceram., 24 (4) (2010), 345354.Google Scholar
[20]Frickey, D.: Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances. IEEE Trans. Microw. Theory Tech., 42 (2) (1994), 205211.CrossRefGoogle Scholar
[21]Wiens, A. et al. : Load modulation for high power applications based on printed ceramics, in IEEE MTT-S Int. Microwave Symp. Digest (IMS), Seattle, 2013.Google Scholar
[22]Wiens, A.; Bengtsson, O.; Maune, H.; Sazegar, M.; Heinrich, W.; Jakoby, R.: Thick-film barium-strontium-titanate vatactors for RF power transistors, in Eur Microwave Integrated Circuits Conf. (EuMIC), Nuremberg, 2013.Google Scholar