Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T11:21:36.247Z Has data issue: false hasContentIssue false

Design of multi-band and high radiation intensity piezoelectric antenna based on external circuit

Published online by Cambridge University Press:  13 October 2022

Yong Zhang
Affiliation:
School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610000, China
Zhongming Yan
Affiliation:
School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610000, China Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Chengdu 610000, China
Biao Dong
Affiliation:
School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610000, China
Yu Wang
Affiliation:
School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610000, China Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Chengdu 610000, China
Hongcheng Zhou*
Affiliation:
School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610000, China Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Chengdu 610000, China
*
Author for correspondence: Hongcheng Zhou, E-mail: zhouhc@home.swjtu.edu.cn

Abstract

This paper presents a novel method to improve the working bandwidth and radiation intensity of piezoelectric antenna by using external circuit. This method makes the piezoelectric antenna combined with roles of high radiation intensity and multiple resonant frequencies without changing the structural size of the piezoelectric antenna. The experimental results show that, compared with the original piezoelectric antenna, the tuning range of the resonant frequency of the piezoelectric antenna caused by the series capacitance and inductance is +13.6 and −24%, respectively. The series inductance will produce new resonance frequency, which provides a new method for the multi-band operation of the piezoelectric antenna. The LLC (series and parallel circuit) composite circuit can increase the number of resonant frequencies of the piezoelectric antenna from 1 to 3, and the S11 at the resonant frequencies are all lower than −10 dB, and the radiated magnetic field of the piezoelectric antenna is increased by 42.3% at least. This method makes the piezoelectric antenna have the dual functions of high radiation intensity and multi-band, which has great significance for broadening the application field of piezoelectric antenna.

Type
Antenna Design, Modeling and Measurements
Copyright
© The Author(s), 2022. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pelosi, G, Selleri, S and Valotti, B (2004) From Poldhu to the Italian station of Coltano: Marconi and the first years of transcontinental wireless. IEEE Antennas and Propagation Magazine 46, 4754.CrossRefGoogle Scholar
Guo, DR, Lu, H and Chen, Y (2011) The feasibility analysis of shipborne ULF/VLF submarine communication. Chinese Journal of Radio Science 26, 11481152.Google Scholar
Sun, Z and Akyildiz, IF (2010) Magnetic induction communications for wireless underground sensor networks. IEEE Transactions on Antennas and Propagation 7, 24262435.CrossRefGoogle Scholar
Mao, ZW, Gao, C, Lu, F and Su, LY (2012) Radiation environment analysis of the United States of America submarine transmitting station at Cutler. in 2012 6th Asia-Pacific Conference on Environmental Electromagnetics(CEEM). IEEE, Shanghai, China, pp. 376–380.Google Scholar
Madanayake, A, Choi, S, Tarek, M, Dharmasena, S, Mandal, S, Glickstein, J and Sehirlioglu, A (2017) Energy-efficient ULF/VLF transmitters based on mechanically-rotating dipoles. 2017 Moratuwa Engineering Research Conference(MERCon). IEEE, Moratuwa, Sri Lanka, pp. 230–235.CrossRefGoogle Scholar
Sinha, D and Amaratunga, G (2015) Electromagnetic radiation under explicit symmetry breaking. Physical Review Letters 14, 147701.CrossRefGoogle Scholar
Sojdehei, JJ, Wrathall, PN and Dinn, DF (2001) Magneto-inductive (MI) communications. MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295). IEEE, Honolulu, HI, USA, vol. 1, pp. 513–519.Google Scholar
Xu, G, Xiao, S, Li, Y and Wang, B (2021) Modeling of electromagnetic radiation induced from a magnetostrictive/piezoelectric laminated composite. Physics Letters A 385, 126959.CrossRefGoogle Scholar
Xu, J, Leung, CM, Zhuang, X, Li, J, Bhardwaj, S and Volakis, J (2019) A low frequency mechanical transmitter based on magnetoelectric heterostructures operated at their resonance frequency. Sensors 19, 853.CrossRefGoogle ScholarPubMed
Cao, J, Yao, H, Pang, Y, Xu, J, Lan, C and Lei, M (2022) Dual-band piezoelectric artificial structure for very low frequency mechanical antenna. Advanced Composites and Hybrid Materials 5, 410418.CrossRefGoogle Scholar
Zhang, Y, Yan, ZM, Han, TH, Zhu, SS, Wang, Y and Zhou, HC (2022) Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle. Chinese Physics B 7, 077702.CrossRefGoogle Scholar
Kim, S, Adib, MR and Lee, K (2019) Development of chipless and wireless underground temperature sensor system based on magnetic antennas and SAW sensor. Sensors and Actuators A: Physical 157, 16.Google Scholar
Martos-Repath, I, Mittal, A and Zaeimbashi, M (2020) Modeling of magnetoelectric antennas for circuit simulations in magnetic sensing applications. IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, Springfield, MA, USA, pp. 49–52.CrossRefGoogle Scholar
Nasrollahpour, M, Romano, A, Sun, N and Zaeimbashi, M (2021) Magnetoelectric antenna for miniaturized acoustic noise dosimetry applications. IEEE Sensors Letters 5, 2500704.CrossRefGoogle Scholar
Singer, A, Dutta, S, Lewis, E, Chen, Z, Chen, JC and Verma, N (2020) Magnetoelectric materials for miniature, wireless neural stimulation at therapeutic frequencies. Neuron 107, 631646.CrossRefGoogle ScholarPubMed
Drobitch, JL, De, A, Dutta, K, Pal, PK, Adhikari, A and Barman, A (2020) Extreme subwavelength magnetoelastic electromagnetic antenna implemented with multiferroic nanomagnets. Advanced Materials Technologies 5, 2000316.CrossRefGoogle Scholar
Zaeimbashi, M, Lin, H, Dong, C, Liang, X, Nasrollahpour, M and Chen, H (2019) NanoNeuroRFID: a wireless implantable device based on magnetoelectric antennas. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 3, 206215.CrossRefGoogle Scholar
Dong, C, He, Y, Li, M, Tu, C, Chu, Z and Liang, X (2020) A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas. IEEE Antennas and Wireless Propagation Letters 19, 398402.CrossRefGoogle Scholar
Kemp, MA, Franzi, M, Haase, A, Jongewaard, E, Whittaker, MT and Kirkpatrick, M (2019) A high Q piezoelectric resonator as a portable VLF transmitter. Nature Communications 10, 1715.CrossRefGoogle ScholarPubMed
Hassanien, AE, Breen, M, Li, M and Gong, S (2020) Acoustically driven electromagnetic radiating elements. Scientific Reports 10, 17006.CrossRefGoogle ScholarPubMed
Nan, TX, Lin, H and Gao, Y (2017) Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nature Communications 8, 296.CrossRefGoogle ScholarPubMed
Xu, JC, Cao, JQ and Guo, MH (2021) Metamaterial mechanical antenna for very low frequency wireless communication. Advanced Composites and Hybrid Materials 4, 761767.CrossRefGoogle Scholar
Jin, H, Dong, SR, Luo, JK and Milne, WI (2011) Generalised Butterworth-Van Dyke equivalent circuit for thin-film bulk acoustic resonator. Electronics Letters 47, 424425.CrossRefGoogle Scholar
Vorobiev, A and Gevorgian, S (2013) Enhanced tunable performance of high Q-factor BaxSr1-xTiO3 film bulk acoustic wave resonators. International Journal of Microwave and Wireless Technologies 5, 361369.CrossRefGoogle Scholar
Muralt, P, Conde, J, Artieda, A, Martin, F and Cantoni, M (2009) Piezoelectric materials parameters for piezoelectric thin films in GHz applications. International Journal of Microwave and Wireless Technologies 1, 1927.CrossRefGoogle Scholar
Bourey, N, Darces, M, Chatelon, Y and Helier, M (2020) Near-field to far-field transformation applied to UHF antennas over lossy ground. International Journal of Microwave and Wireless Technologies 12, 227232.CrossRefGoogle Scholar
Pollayi, L, Dasari, RK and Pandharipande, VM (2019) Design and development of wide band dual-polarized magneto electric dipole antenna for mobile communications. International Journal of Microwave and Wireless Technologies 11, 175181.CrossRefGoogle Scholar
Wang, G, Chen, S and Wen, J (2011) Low-frequency locally resonant band gaps induced by arrays of resonant shunts with Antoniou's circuit: experimental investigation on beams. Smart Materials and Structures 20, 015026.CrossRefGoogle Scholar
Ruby, R, Bradley, P and Larson, JD (1999) PCS 1900 MHz duplexer using thin film bulk acoustic resonators. Electronics Letters 35, 794795.CrossRefGoogle Scholar
Zhang, H, Xiao, Y, Wen, J, Yu, D and Wen, X (2016) Ultra-thin smart acoustic metasurface for low-frequency sound insulation. Applied Physics Letters 108, 141902.CrossRefGoogle Scholar