Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-14T18:30:07.194Z Has data issue: false hasContentIssue false

Design and implementation of hybrid fed array antennae for Sub-6 GHz and 5G mm-wave communication and wireless applications

Published online by Cambridge University Press:  04 January 2024

Arun Raj*
Affiliation:
Computer Aided Electromagnetic Design Laboratory, ECE Department, National Institute of Technology, Durgapur, West Bengal, India
Durbadal Mandal
Affiliation:
Computer Aided Electromagnetic Design Laboratory, ECE Department, National Institute of Technology, Durgapur, West Bengal, India
*
Corresponding author: Arun Raj; Email: arunraj61299@gmail.com

Abstract

This paper proposes fractal-inspired array antennae for wideband applications. The proposed antennae have a resonance frequency range of 20–40 GHz. The modified fractal antennae are fabricated with a height of 1.6 mm, substrate width, and length of 100, 50, 25, and 18.75 mm2, and a simulated result shows that the gain is increased to 11.04, 11.9, 8.4, and 6 dBi, and the designed antennae radiate power with directivity of 11.3, 13.4, 9.29, and 7.17 dBi concerning proposed designs A, B, C, and D, respectively. The proposed antennae with 5G New Radio (NR) bands have more radiation concerning resonate frequencies in the 20–40 GHz range with Φ = 0°, Φ = 90°, and θ = 90°. Moreover, the bandwidths for applications covered in the 5G NR and sub-6G are 1.92, 0.73, 0.7, 2.4, 1.3, 5.3, and 1.26 GHz, and 3.4, 3.7, 2.67, and 4.65 GHz, and 2, 3.5, and 1.57 GHz, and 2.5, 1.5, and 1.0 GHz with the maximum return loss of 37 dB, 32.8 dB, 31.2 dB, and 23 dB with corresponding resonate frequencies as 21.5, 27.6, 33, and 27.6 GHz concerning designs A, B, C, and D, respectively. The proposed antennae have been implemented and validated using Computer Simulation Technology (CST), Vector Network Analyzer (VNA), spectrum analyzer, and power sensor.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bharti, P, Bharti, G and Sivia, JS (2021) A design of multiband nested square shaped ring fractal antenna with circular ring elements for wireless applications. Progress in Electromagnetics Research C 108, 115125.CrossRefGoogle Scholar
Singhal, S and Singh, AK (2020) Elliptical monopole based super wideband fractal antenna. Microwave and Optical Technology Letters 62(3), 13241328.CrossRefGoogle Scholar
Kumar, A and Pharwaha, APS (2022) Development of a modified Hilbert curve fractal antenna for multiband applications. IETE Journal of Research 68, 35973606CrossRefGoogle Scholar
Karthikeya, GS, Abegaonkar, MP and Koul, SK (2017) Low cost high gain triple band mmWave Sierpinski antenna loaded with uniplanar EBG for 5G applications. In 2017 IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM), IEEE, 15.CrossRefGoogle Scholar
Singh, A and Singh, S (2016) Design and optimization of a modified Sierpinski fractal antenna for broadband applications. Applied Soft Computing 38, 843850.CrossRefGoogle Scholar
Ali, T, Subhash, BK and Biradar, RC (2018) A miniaturized decagonal Sierpinski UWB fractal antenna. Progress in Electromagnetics Research C 84, 161174.CrossRefGoogle Scholar
Choukiker, YK and Behera, SK (2017) Wideband frequency reconfigurable Koch snowflake fractal antenna. IET Microwaves, Antennas & Propagation 11(2), 203208.CrossRefGoogle Scholar
Praveena, A and Ponnapalli, VS (2019) A review on design aspects of fractal antenna arrays. 2019 International Conference on Computer Communication and Informatics (ICCCI), IEEE, 13.CrossRefGoogle Scholar
Kumar, A and Singh, AP (2019) Design of micro‐machined modified Sierpinski gasket fractal antenna for satellite communications. International Journal of RF and Microwave Computer-Aided Engineering 29(8), .CrossRefGoogle Scholar
Kaur, M and Sivia, JS (2019) Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO. AEU – International Journal of Electronics and Communications 99, 1424.CrossRefGoogle Scholar
Garg, RK, Nair, MVD, Singhal, S and Tomar, R (2020) A new type of compact ultra‐wideband planar fractal antenna with WLAN band rejection. Microwave and Optical Technology Letters 62(7), 25372545.CrossRefGoogle Scholar
Ullah, H and Tahir, FA (2020) A novel snowflake fractal antenna for dual-beam applications in 28 GHz band. IEEE Access 8, 1987319879.CrossRefGoogle Scholar
Bhatia, SS and Sivia, JS (2019) On the design of fractal antenna array for multiband applications. Journal of the Institution of Engineers (India): Series B 100(5), 471476.Google Scholar
Sran, SS and Sivia, JS (2020) ANN and IFS based wearable hybrid fractal antenna with DGS for S, C and X band application. AEU – International Journal of Electronics and Communications 127, .CrossRefGoogle Scholar
Rani, RB (2020) A compendious review on fractal antenna geometries in wireless communication. In 2020 International Conference on Inventive Computation Technologies (ICICT), IEEE, 888893.Google Scholar
Aravindraj, E, Nagarajan, G and Kumaran, RS (2020) Design and analysis of recursive square fractal antenna for WLAN applications. In 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), IEEE, 15.CrossRefGoogle Scholar
Ahmad, BH and Nornikman, H (2013) Fractal microstrip antenna with Minkowski Island split ring resonator for broadband application. In IEEE Int. RF and Microwave Conf. (RFM), Penang, 214218.CrossRefGoogle Scholar
Sharma, V, Lakwar, N and Garg, T (2017) A multiband low-cost fractal antenna based on parasitic split ring resonators. IET Microwaves, Antennas & Propagation 12(6), 913919.CrossRefGoogle Scholar
Dangkham, P and Phongcharoenpanich, C (2016) A compact split ring resonator antenna of paper based for UHF-RFID passive tag. In IEEE Conference on Antenna Measurements & Applications (CAMA).CrossRefGoogle Scholar
Sivia, JS, Singh, A and Kamal, TS (2013) Design of Sierpinski carpet fractal antenna using artificial neural networks. International Journal of Computer Applications 68(8), 510.Google Scholar
Singhal, S (2020) Four arm windmill shaped superwideband terahertz MIMO fractal antenna. Optik 219, .CrossRefGoogle Scholar
Raj, A, Dhubkarya, DC, Srivastava, DK and Mandal, D (2023) Design and analysis of square shape slot cut high gain Sierpinski carpet fractal antenna for wireless applications. Microwave and Optical Technology Letters 65, 23372343.CrossRefGoogle Scholar
Quintero, G, Zurcher, J-F and Skrivervik, AK (2011) System fidelity factor: A new method for comparing UWB antennas. IEEE Transactions on Antennas and Propagation 59(7), 25022512.Google Scholar
Kumar, OP, Kumar, P, Ali, T, Kumar, P and Sb, K (2023) A quadruple notch UWB antenna with decagonal radiator and Sierpinski square fractal slots. Journal of Sensor and Actuator Networks 12(2), .CrossRefGoogle Scholar
Kumar, OP, Ali, T, Kumar, P, Kumar, P and Anguera, J (2023) An elliptical-shaped dual-band UWB notch antenna for wireless applications. Applied Sciences 13(3), .CrossRefGoogle Scholar
Kumar, OP, Ali, T and Kumar, P (2023) A novel corner etched rectangular shaped ultrawideband antenna loaded with truncated ground plane for microwave imaging. Wireless Personal Communications 130, 22412259.CrossRefGoogle Scholar
Rao, M-V, Madhav, B-T-P, Anilkumar, T and Nadh, B-P (2018) Metamaterial inspired quad band circularly polarized antenna for WLAN/ISM/Bluetooth/WiMAX and satellite communication applications. AEU – International Journal of Electronics and Communications 97, 229241.Google Scholar
Raj, A and Mandal, D (2022) Comparative analysis of the 2 × 2 patch antenna array with modified fractal antenna for 5G communication and wireless applications. In 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Bangalore, India, 670675.CrossRefGoogle Scholar
Rahimi, M, Maleki, M, Soltani, M, Arezomand, A-S and Zarrabi, F-B (2016) Wideband SRR-inspired antenna with circular polarization for wireless application. AEU – International Journal of Electronics and Communications 70(9), 11991204.CrossRefGoogle Scholar
Dastranj, A, Ranjbar, F and Bornapour, M (2019) A new compact circular shape fractal antenna for broadband wireless communication applications. Progress in Electromagnetics Research C 93, 1928.CrossRefGoogle Scholar
Kaur, M and Sivia, JS (2020) Giuseppe Peano and Cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm. International Journal of RF and Microwave Computer-Aided Engineering 30(1), .CrossRefGoogle Scholar
Pandeeswari, R and Raghavan, S (2015) A CPW-fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and WIMAX applications. Microwave and Optical Technology Letters 57, 24132418.CrossRefGoogle Scholar
Pandeeswari, R and Raghavan, S (2015) Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement. Microwave and Optical Technology Letters 57, 292296.CrossRefGoogle Scholar
Ji, JK, Kim, GH and Seong, WM (2010) Bandwidth enhancement of metamaterial antennas based on composite right/left-handed transmission line. IEEE Antennas and Wireless Propagation Letters 9, 3639.CrossRefGoogle Scholar
Zhang, Q and Gao, Y (2017) Compact low-profile UWB antenna with characteristic mode analysis for UHF TV white space devices. IET Microwaves, Antennas & Propagation 11, 16291635.CrossRefGoogle Scholar
Rayno, JT and Sharma, SK (2012) Wideband frequency-reconfigurable Spirograph planar monopole antenna (SPMA) operating in the UHF band. IEEE Antennas and Wireless Propagation Letters 11, 15371540.CrossRefGoogle Scholar
Indhu, KK and Mohanan, P (2011) Compact broadband toploaded planar monopole antenna for low frequency applications. In Proceedings of the 2011 Indian Antenna Week (IAW), Kolkata, India, 18–22 December 2011, Piscataway, NJ, USA: IEEE.CrossRefGoogle Scholar
Andriamiharivolamena, T, Lemaitre-Auger, P, Tedjini, S and Tirard, F (2015) Compact planar monopole antenna for wearable wireless applications. Comptes Rendus Physique 16, 851861.CrossRefGoogle Scholar
Rad, MA, Soheilifar, MR and Zarrabi, FB (2019) Compact microstrip antenna based on fractal metasurface with low radar cross section and wide bandwidth. AEU – International Journal of Electronics and Communications 98, 7479.CrossRefGoogle Scholar
Wu, C-M (2007) Wideband dual-frequency CPW-fed triangular monopole antenna for DCS/WLAN application. AEU – International Journal of Electronics and Communications 61, 563567.CrossRefGoogle Scholar
Shanmuganantham, T, Balamanikandan, K and Raghavan, S (2008) CPW-fed slot antenna for wideband applications. International Journal of Antennas and Propagation 2008, 15.CrossRefGoogle Scholar
Cui, -Y-Y, Sun, Y-Q, Yang, H-C and Ruan, C-L (2008) A new triple-band CPW-fed monopole antenna for WLAN and WIMAX applications. Progress in Electromagnetics Research M 2, 141151.CrossRefGoogle Scholar
Ray, KP, Thakur, SS and Deshmukh, RA (2012) Wideband L-shaped printed monopole antenna. AEU – International Journal of Electronics and Communications 66, 693696.CrossRefGoogle Scholar
Jothi Chitra, R and Nagarajan, V (2013) Double L-slot microstrip patch antenna array for WiMAX and WLAN applications. Computers and Electrical Engineering 39, 10261041.CrossRefGoogle Scholar
Suma, MN, Bijumon, PV, Sebastian, MT and Mohanan, P (2007) A compact hybrid CPW fed planar monopole/dielectric resonator antenna. Journal of the European Ceramic Society 27, 30013004.CrossRefGoogle Scholar
Chen, L, Ren, X, Yin, Y and Wang, Z (2013) Broadband CPW-fed circularly polarized antenna with an irregular slot for 2.45 GHz RFID reader. Progress in Electromagnetics Research Letters 41, 7786.CrossRefGoogle Scholar
Nhlengethwa, N and Kumar, P (2021) Fractal microstrip patch antennas for dual-band and triple-band wireless applications. International Journal on Smart Sensing and Intelligent Systems 14, 19.CrossRefGoogle Scholar