Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-04T03:59:51.128Z Has data issue: false hasContentIssue false

Cylindrical conformation and miniaturization of cavity-backed magnetoelectric antenna with an outer Γ-shaped probe

Published online by Cambridge University Press:  07 December 2023

Alexandre Causse
Affiliation:
STC department, French-German Research Institute of Saint-Louis, Saint-Louis, France IETR, UMR CNRS 6164, University of Rennes 1, Rennes, France
Loïc Bernard*
Affiliation:
STC department, French-German Research Institute of Saint-Louis, Saint-Louis, France IETR, UMR CNRS 6164, University of Rennes 1, Rennes, France
Sylvain Collardey
Affiliation:
IETR, UMR CNRS 6164, University of Rennes 1, Rennes, France
Ala Sharaiha
Affiliation:
IETR, UMR CNRS 6164, University of Rennes 1, Rennes, France
*
Corresponding author: Loïc Bernard; Email: loic.bernard@isl.eu

Abstract

In this article, the cylindrical conformation of a linearly polarized cavity-backed magnetoelectric (ME) antenna is studied. Starting from a planar ME antenna presenting a wide bandwidth due to a specific design of its feeding probe, the impact of conformation is shown; the coupling between the ME dipole and the cavity walls is demonstrated to be the key element to keep a wideband behavior. Conformal antennas offering the same impedance bandwidth as the planar antenna are presented operating at Global Navigation Satellite System frequencies (1.164–1.61 GHz). As a result of the conformation, the antenna size has to be reduced to maintain the coupling and a wideband behavior. A prototype conformed to a 44-mm radius cylinder was built using low-cost additive manufacturing. External dimensions of 62 × 62 × 35 mm3 (0.285 × 0.285 × 0.16λ03, where λ0 is the wavelength at 1.38 GHz) were obtained, showing a ground plane area reduction of 46% compared to the planar antenna with the same materials. The conformal antenna also exhibits very steady radiation properties with a gain of around 4.5 dBi and a very similar and stable 3 dB beamwidth around 113° in E- and H-planes. A relatively good agreement is found between measurements and simulation.

Type
Research Paper
Copyright
© French German Research Institute of St Louis and Institut d'Electronique et des Techniques du Numérique, 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yinusa, KA (2018) A dual-band conformal antenna for GNSS applications in small cylindrical structures. IEEE Antennas and Wireless Propagation Letters 17(6), 10561059.CrossRefGoogle Scholar
Zhong, Z-P, Zhang, X, Liang, JJ, Han, CZ, Fan, ML, Huang, GL, Xu, W and Yuan, T (2019) A compact dual-band circularly polarized antenna with wide axial-ratio beamwidth for vehicle GPS satellite navigation application. IEEE Transactions on Vehicular Technology 68(9), 86838692.CrossRefGoogle Scholar
Johannsen, U, Schulpen, R, Manders, LCW and Engel, R (2021) GNSS antenna design for underwater mine-disposal-vehicles. In 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, March, 15.CrossRefGoogle Scholar
Tinoco-S., AF, Ribeiro-Filho, PC, Heckler, MVT, Lacava, JCDS and Pereira-Filho, OMC (2016) Fast predesigning of circumferential arrays of probe-fed microstrip antennas. In 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, 14.CrossRefGoogle Scholar
Luk, KM and Wong, H (2006) A new wideband unidirectional antenna element. International Journal of Microwave and Optical Technology 1(1), .Google Scholar
Ge, L and Luk, KM (2013) A magneto-electric dipole antenna with low-profile and simple structure. IEEE Antennas and Wireless Propagation Letters 12, 140142.CrossRefGoogle Scholar
Ding, C and Luk, K-M (2016) Low-profile magneto-electric dipole antenna. IEEE Antennas and Wireless Propagation Letters 15, 16421644.CrossRefGoogle Scholar
Luk, KM and Wu, B (2012) The magnetoelectric dipole – A wideband antenna for base stations in mobile communications. Proceedings of the IEEE 100(7), 22972307.Google Scholar
Li, M, Luk, K-M, Ge, L and Zhang, K (2016) Miniaturization of magnetoelectric dipole antenna by using metamaterial loading. IEEE Transactions on Antennas and Propagation 64(11), 49144918.CrossRefGoogle Scholar
Zhang, X, Jiao, Y, Weng, Z, Zhang, Y and Feng, S (2019) Wideband magneto‐electric dipole antenna with a claw shaped reflector for 5G communication systems. Microwave and Optical Technology Letters 61(9), 20982104.CrossRefGoogle Scholar
Tao, J, Feng, Q and Liu, T (2018) Dual-wideband magnetoelectric dipole antenna with director loaded. IEEE Antennas and Wireless Propagation Letters 17(10), 18851889.CrossRefGoogle Scholar
Neetu, GPP, Tiwari, VN and Marwah, SS (2016) A novel ultra-wide band magneto-electric dipole antenna with a cavity reflector. Progress in Electromagnetics Research C 63, 143152.CrossRefGoogle Scholar
An, WX, Lau, KL, Li, SF and Xue, Q (2010) Wideband E-shaped dipole antenna with staircase-shaped feeding strip. Electronics Letters 46(24), .CrossRefGoogle Scholar
Causse, A, Bernard, L, Sharaiha, A and Collardey, S (2021) Low profile multiband magnetoelectric antenna for GNSS and telemetry. In 2021 IEEE Conference on Antenna Measurements & Applications (CAMA), France.CrossRefGoogle Scholar
Chang, L, Zhang, J-Q, Chen, -L-L and Li, B-M (2018) Bandwidth-enhanced cavity-backed magneto-electric dipole antenna. IEEE Access 6, 6248262489.CrossRefGoogle Scholar
Feng, B, Chung, KL, Lai, J and Zeng, Q (2019) A conformal magneto-electric dipole antenna with wide H-plane and band-notch radiation characteristics for Sub-6-GHz 5G base-station. IEEE Access 7, 1746917479.CrossRefGoogle Scholar
Causse, A, Rodriguez, K, Bernard, L, Sharaiha, A and Collardey, S (2021) Compact bandwidth enhanced cavity-backed magneto-electric dipole antenna with outer Γ-Shaped probe for GNSS bands. Sensors 21(11), .CrossRefGoogle ScholarPubMed
Chen, C and Zheng, H (2017) Design of a dual-band conformai antenna on a cone surface for missle-borne. In 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, October, 13.CrossRefGoogle Scholar
Sahoo, R and Vakula, D (2017) A cylindrical conformal antenna for GPS application. In 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Delhi, July, 14.CrossRefGoogle Scholar
Kellomäki, T (2012) Analysis of circular polarization of cylindrically bent microstrip antennas. International Journal of Antennas and Propagation 2012, 18.Google Scholar
Causse, A, Bernard, L, Collardey, S and Sharaiha, A (2022) Small conformal cavity-backed magnetoelectric antenna for GNSS bands. In 16th European Conference on Antennas and Propagation (EuCAP), March, Madrid, Spain.CrossRefGoogle Scholar
Ansys HFSS 3D High frequency simulation software. https://www.ansys.com/fr-fr/products/electronics/ansys-hfss (accessed 19 May 2022).Google Scholar
Idayachandran, G and Nakkeeran, R (2016) Compact magneto‐electric dipole antenna for LTE femtocell base stations. Electronics Letters 52(8), 574576.CrossRefGoogle Scholar
Liu, Y, Li, M, Zhang, Y, Wu, Y and Xia, X (2017) Compact magneto-electric dipole antenna with low-profile for LTE femtocell base stations. In 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, October, 13.CrossRefGoogle Scholar