Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-15T17:09:48.745Z Has data issue: false hasContentIssue false

Compact size antenna for skin implantable medical devices

Published online by Cambridge University Press:  30 November 2023

Doondi Kumar Janapala
Affiliation:
Department of ECE, Karunya Institute of Technology and Sciences, Coimbatore, India Department of ECE, Vishnu Institute of Technology, Bhimavaram, India
Nesasudha Moses*
Affiliation:
Department of ECE, Karunya Institute of Technology and Sciences, Coimbatore, India
Jebasingh Bhagavathsingh
Affiliation:
Department of Applied Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, India
*
Corresponding author: Nesasudha Moses; Email: nesasudha@karunya.edu

Abstract

This research work presents an implantable antenna that operates at 5.8 GHz. By using a radiator with a loop-based design, the antenna can be made smaller. Radiator is made up of three connected rectangular loops. On the substrate’s back side, an I-shaped ground plane is used. As substrate and superstrate, polydimethylsiloxane (PDMS) with dimensions of 7 mm × 5 mm × 0.3 mm is used. The conducting sections are made using copper foil that is 30 µm thick. The suggested antenna is examined by the implantable medical device using realistic human scalp phantom models and a homogenous skin box. Simulated study revealed that it operates around 5.8 GHz with a bandwidth from 5.69 to 5.92 GHz. The specific absorption rate was 0.28 and 0.26 W/kg for skin box and human scalp phantoms, respectively, at 1 mW input power across 1 g volume tissue.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdi, FG, Aliakbarian, H, Geok, TK, Rahim, SKA and Soh, PJ (2020) Electrically small spiral PIFA for deep implantable devices. IEEE Access 8, 158459158474.CrossRefGoogle Scholar
Ma, S, Björninen, T, Sydänheimo, L, Voutilainen, MH and Ukkonen, L (2021) Double split rings as extremely small and tuneable antennas for brain implantable wireless medical microsystems. IEEE Transactions on Antennas and Propagation 69, 760768.CrossRefGoogle Scholar
Zada, M, Shah, IA, Basir, A and Yoo, H (2021) Ultra-compact implantable antenna with enhanced performance for leadless cardiac pacemaker system. IEEE Transactions on Antennas and Propagation 69, 11521157.CrossRefGoogle Scholar
Manoufali, M, Bialkowski, K, Mohammed, B, Mills, PC and Abbosh, AM (2019) Compact implantable antennas for cerebrospinal fluid monitoring. IEEE Transactions on Antennas and Propagation 67, 49554967.CrossRefGoogle Scholar
Ma, S, Sydänheimo, L and Björninen, T (2018) Split-ring resonator antenna system with cortical implant and head-worn parts for effective far-field implant communications. IEEE Antennas and Wireless Propagation Letters 17, 710713.CrossRefGoogle Scholar
Maity, S, Barman, KR and Bhattacharjee, S (2017) Silicon-based technology: Circularly polarized microstrip patch antenna at ISM band with miniature structure using fractal geometry for biomedical application. Microwave and Optical Technology Letters 60, 93101.CrossRefGoogle Scholar
Bhattacharjee, S, Rao, KS, Metya, SK and Bhunia, CT (2016) Performance enhancement of implantable medical antenna using differential feed technique. Engineering Science and Technology, an International Journal 19, 642650.CrossRefGoogle Scholar
Basir, A and Yoo, H (2019) A stable impedance-matched ultrawideband antenna system mitigating detuning effects for multiple biotelemetric applications. IEEE Transactions on Antennas and Propagation 67, 34163421.CrossRefGoogle Scholar
Bhattacharjee, S, Maity, S, Bhadra Chaudhuri, SR and Mitra, M (2018) Metamaterial-inspired wideband biocompatible antenna for implantable applications. IET Microwaves, Antennas & Propagation 12, 17991805.CrossRefGoogle Scholar
Li, H, Wang, B, Guo, L and Xiong, J (2019) Efficient and wideband implantable antenna based on magnetic structures. IEEE Transactions on Antennas and Propagation 67, 72427251.CrossRefGoogle Scholar
Jiang, Z, Wang, Z, Leach, M, Lim, EG, Wang, J, Pei, R, Huang, Y (2019) Wideband loop antenna with split-ring resonators for wireless medical telemetry. IEEE Antennas and Wireless Propagation Letters 18, 14151419.CrossRefGoogle Scholar
Tsai, C, Chen, K and Yang, C (2016) Implantable wideband low-specific-absorption-rate antenna on a thin flexible substrate. IEEE Antennas and Wireless Propagation Letters 15, 10481052.CrossRefGoogle Scholar
Fan, Y, Liu, H, Liu, X, Cao, Y, Li, Z and Tentzeris, MM (2019) Novel coated differentially fed dual-band fractal antenna for implantable medical devices. IET Microwaves, Antennas & Propagation 14, 199208.CrossRefGoogle Scholar
Cho, Y and Yoo, H (2016) Miniaturised dual-band implantable antenna for wireless biotelemetry. Electronics Letters 52, 10051007.CrossRefGoogle Scholar
Ganeshwaran, N, Jeyaprakash, JK, Alsath, MGN and Sathyanarayanan, V (2020) Design of a dual-band circular implantable antenna for biomedical applications. IEEE Antennas and Wireless Propagation Letters 19, 119123.CrossRefGoogle Scholar
Faisal, F, Zada, M, Ejaz, A, Amin, Y, Ullah, S and Yoo, H (2020) A miniaturized dual-band implantable antenna system for medical applications. IEEE Transactions on Antennas and Propagation 68, 11611165.CrossRefGoogle Scholar
Faisal, F and Yoo, H (2019) A miniaturized novel-shape dual-band antenna for implantable applications. IEEE Transactions on Antennas and Propagation 67, 774783.CrossRefGoogle Scholar
Shah, SAA and Yoo, H (2018) Scalp-implantable antenna systems for intracranial pressure monitoring. IEEE Transactions on Antennas and Propagation 66, 21702173.CrossRefGoogle Scholar
Zada, M, Shah, IA and Yoo, H (2020) Metamaterial-loaded compact high-gain dual-band circularly polarized implantable antenna system for multiple biomedical applications. IEEE Transactions on Antennas and Propagation 68, 11401144.CrossRefGoogle Scholar
Bhattacharjee, S, Maity, S and Mitra, M (2019) A compact dual-band dual-polarized omnidirectional antenna for on-body applications. IEEE Transactions on Antennas and Propagation 67, 50445053.CrossRefGoogle Scholar
Zada, M and Yoo, H (2018) A miniaturized triple-band implantable antenna system for bio-telemetry applications. IEEE Transactions on Antennas and Propagation 66, 73787382.CrossRefGoogle Scholar
Gani, I and Yoo, H (2016) Multi-band antenna system for skin implant. IEEE Microwave and Wireless Components Letters 26, 294296.CrossRefGoogle Scholar
Shah, IA, Zada, M and Yoo, H (2019) Design and analysis of a compact-sized multiband spiral-shaped implantable antenna for scalp implantable and leadless pacemaker systems. IEEE Transactions on Antennas and Propagation 67, 42304234.CrossRefGoogle Scholar
Kumar, RP, Swamy, YVNRB, Hari Prasad, BS, Krishna, RK, Babu, NA and Brahmanandam, SP (2023) Polyimide-based flexible antenna for telemedicine and wireless applications. Recent Advances in Electrical & Electronic Engineering 16, 426435.Google Scholar
Kaur, G and Kaur, A (2020) Breast tissue tumor detection using “S” parameter analysis with an UWB stacked aperture coupled microstrip patch antenna having a “+” shaped defected ground structure. International Journal of Microwave and Wireless Technologies 12, 635651.CrossRefGoogle Scholar
Andreuccetti, D, Fossi, R and Petrucci, C (1997) An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz–100 GHz. Florence: IFAC-CNR. http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.Google Scholar
(2006) IEEE Standards for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95.1-2005.Google Scholar
Perumalla, KC and Muthusamy, P (2022) Inductive and capacitive loaded miniaturized implantable patch antenna with circular polarization for bio‐medical applications. International Journal of RF and Microwave Computer-Aided Engineering 32, 18.CrossRefGoogle Scholar
Pokharel, RK, Barakat, A, Alshhawy, S, Yoshitomi, K, Sarris, C (2021) Wireless power transfer system rigid to tissue characteristics using metamaterial inspired geometry for biomedical implant applications. Scientific Reports 11, .CrossRefGoogle ScholarPubMed
Janapala, DK and Nesasudha, M (2022) A highly miniaturized antenna with wider band for biomedical applications. Electromagnetic Biology and Medicine 41, 3543.CrossRefGoogle ScholarPubMed
Neebha, TM, Nesasudha, M and Janapala, DK (2020) A stable miniaturised AMC loaded flexible monopole antenna for ingestible applications. Computers in Biology and Medicine 116, 19.CrossRefGoogle ScholarPubMed
Manafi, S and Deng, H (2014) Design of a small modified Minkowski fractal antenna for passive deep brain stimulation implants. International Journal of Antennas and Propagation 2014, 19.CrossRefGoogle Scholar