Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T09:05:24.713Z Has data issue: false hasContentIssue false

Design development and experimental validation of an EBG matrix antenna for tracking application

Published online by Cambridge University Press:  03 September 2015

Hussein Abou Taam*
Affiliation:
XLIM, UMR CNRS no 7252, 123 Avenue Albert Thomas, 87060, Limoges, France
Georges Zakka El Nashef
Affiliation:
XLIM, UMR CNRS no 7252, 123 Avenue Albert Thomas, 87060, Limoges, France
Eric Arnaud
Affiliation:
XLIM, UMR CNRS no 7252, 123 Avenue Albert Thomas, 87060, Limoges, France
Nicolas Chevalier
Affiliation:
CISTEME, 12 RUE DE GEMINI, 87000, Limoges, France
Bertrand Lenoir
Affiliation:
INOVEOS, 64 Avenue de 11 Novembre, 19100, Brive, France
Bernard Jecko
Affiliation:
XLIM, UMR CNRS no 7252, 123 Avenue Albert Thomas, 87060, Limoges, France
Mohamed Rammal
Affiliation:
GRIT Saida, Institut Universitaire de Technologie, Saida, Liban
*
Corresponding author: H. A. Taam Email: hk_doc@hotmail.com

Abstract

Today's increase of functions, improvement of performances, and cost reductions required on an agile electronically scanned antenna, drive researchers to develop an innovative antennas’ concept in order to deal with the proposed challenge. In this context, this article describes and demonstrates an experimental prototype to show the reliability and efficiency of the electromagnetic band gap (EBG) matrix antenna theoretical aspect, for beam forming and beam steering applications. The originality of this work is the antenna itself which constitutes the subject of an accepted national and international patent. In fact, the proposed antenna is based on the equivalent radiating surface approach and used special EBG antennas called “pixels” to overcome some of the array approach defects. The antenna has demonstrated different electromagnetic behaviors, such as low mutual coupling, high gain preservation for high scanning angles values, etc.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hommel, H.; Feldle, H.P.: Current status of airborne active phased array (AESA) radar system and future trends, in 34th European Microwave Conf., Amsterdam, 2004, 15171520.Google Scholar
[2] Jecko, B.; Hajj, M.; Chantalat, R.; Salah Toubet, M.: Antenne élémentaire et antenne réseau mono ou bidimensionnelle correspondante. PCT Patent: PCT/EP2012/076509; French Patent: FR 11 62141.Google Scholar
[3] Taam, H.A.; Toubet, M.S.; Monediere, T.; Jecko, B.; Rammal, M.: A new agile radiating system called electromagnetic band gap. Int. J. Antennas Propag., (2014), Article ID 309728, 7.Google Scholar
[4] Dan, S.; Zhang, L.; Broas, R.F.J.; Alexopolous, N.G.; Yablonovitch, E.: High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech., 47 (11) (1999), 20592074.Google Scholar
[5] Yuehe, G.e.; Esselle, K.P.; Bird, T.S.: The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas. IEEE Trans. Antennas Propag. , 60 (2) (2012), 743750.Google Scholar
[6] Abou Taam, H.; Zakka El Nashef, G.; Jecko, B.; Rammal, M.: Agile Radiating Matrix Antenna System For Radar Applications, in Int. RADAR conf. Lille, France, October 2014.Google Scholar