Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-27T23:17:12.317Z Has data issue: false hasContentIssue false

An Experiment Measuring Water Consumption in Roman Hydrophobic Mortar (opus signinum)

Published online by Cambridge University Press:  27 August 2024

Javier Martínez Jiménez*
Affiliation:
Department of Prehistory and Archaeology, University of Granada, Spain
Juan Jesús Padilla Fernández
Affiliation:
Department of Prehistory, Ancient History and Archaeology, University of Salamanca, Spain
Elena H. Sánchez López
Affiliation:
Department of Prehistory and Archaeology, University of Granada, Spain
*
*Author for correspondence: javiermj@ugr.es

Abstract

Opus signinum is a lime mortar mix that includes crushed pottery as an aggregate. Because it is water-resistant, it was used to line hydraulic structures like pools and aqueducts. While there have been numerous recreations of Roman ‘concretes’ in the past, hydrophobic linings have received little attention, and all preliminary studies in these recreations have paid more attention to the dry components and the lime than to the hydric needs of the mortar. The experiment presented here was to gain a better understanding, with the help of traditional builders, of the process of mixing and applying hydrophobic linings and calculate the water consumption of individual samples. The data obtained contribute to assessing the water consumption needs on Roman construction sites, what associated logistics these volumes required, and what the technicalities of applying this specific type of lining were.

L'opus signinum est un mélange de mortier de chaux incorporant de la céramique concassée servant d'agrégat. Étant étanche, on l'a utilisé pour revêtir des structures telles que des aqueducs et bassins. Alors qu'il existe maintes reconstitutions de « béton » romain, les revêtements hydrophobes ont peu retenu l'attention et les reconstructions préliminaires, dans l'ensemble, concernent surtout les éléments secs et la chaux plutôt que le volume d'eau nécessaire à la fabrication du mortier. L'expérience présentée ici a pour but de mieux comprendre, avec le concours de maçons traditionnels, les mélanges et l'application des revêtements hydrophobes et de calculer le volume d'eau requis par échantillon. Les données acquises permettent d'estimer la consommation en eau sur les chantiers romains et ce qu'elle représentait en termes logistiques ainsi que d’évaluer les aspects techniques de ce type d'enduit. Translation by Madeleine Hummler

Opus signinum ist eine Kalkmörtel-Mischung mit Schamotte als Zuschlagstoff. Da der Mörtel wasserfest ist, wurde er für die Abdichtung von Strukturen wie Wasserbecken und Aquädukten benutzt. Obwohl man römischen „Beton“ in mehreren Rekonstruktionen wiederhergestellt hat, gibt es nur wenige Untersuchungen von wasserabweisenden Auskleidungen und diese haben sich auf die Trockenkomponenten und den Kalk und nicht auf den Wasserbedarf des Mörtels konzentriert. Das Ziel des vorliegenden Experiments war, mithilfe von erfahrenen traditionellen Baumeistern, die Mischungen und Anwendungen von wasserfesten Beschichtungen besser zu verstehen und den Wasserbedarf von einzelnen Proben zu messen. Die Ergebnisse tragen zur Auswertung des Wasserverbrauchs und der damit verbundenen Versorgung auf römischen Baustellen bei und vermitteln aufschlussreiche Einblicke in den technischen Aspekten dieser spezifischen Art von Bekleidung. Translation by Madeleine Hummler

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of the European Association of Archaeologists

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, J.-P. 1994. Roman Building: Materials and Techniques. (3rd ed). London: Batsford.Google Scholar
Brune, P., 2010. The Mechanics of Imperial Roman Concrete and the Structural Design of Vaulted Monuments (unpublished PhD dissertation, University of Rochester).Google Scholar
Callahan, E. 1999. What is Experimental Archaeology? In: Wescott, D., ed. Primitive Technology: A Book of Earth Skills. Salt Lake City (UT): Gibbs Smith, pp. 46.Google Scholar
Camporeale, S. 2010. Military Building Techniques in Mauretania Tingitana: The Use of Mortar and Rubble at Thamusida (Sidi Ali ben Ahmed, Morocco). In: Ringbom, Å. & Hohlfelder, R.L., eds. Building Roma Aeterna: Current Research on Roman Mortar and Concrete. Helsinki: Societas Scientiarum Fennica, pp. 169–86.Google Scholar
Cardenas, A. & Agudo, A. 2012. La Edad del Barro. La vida cotidiana en Bailén desde 1950 a nuestros días. Granada: Port Royal.Google Scholar
Carrera Díaz, G. 2015. ¡Cal de Morón! Ser calero en Morón de la Frontera: ejemplo de buena práctica de salvaguarda del Patrimonio Inmaterial de la Humanidad. In: Timón, M.P., Carrera, G. & Gordillo, I., eds. En cal viva: el trabajo de los caleros de Morón. Sevilla: Asociación Cultural Hornos de la Cal de Morón, pp. 1625.Google Scholar
Cato. De re rustica, ed. and trans. Hooper, W.D. & Ash, H.B. 1934. Cambridge: Harvard University Press.Google Scholar
Cazalla Vázquez, O. 2002. Morteros de cal. Aplicación en el patrimonio histórico (unpublished PhD dissertation, University of Granada).Google Scholar
DeLaine, J. 1997. The Baths of Caracalla: A Study in the Design, Construction and Economics of Large-Scale Building Projects in Imperial Rome. Portsmouth: Journal of Roman Archaeology.Google Scholar
DeLaine, J. 2017. Quantifying Manpower and the Cost of Construction in Roman Building Projects: Research Perspectives. Archeologia dell'Architettura, 22: 1319.Google Scholar
Dix, B. 1982. The Manufacture of Lime and its Uses in the Western Roman Provinces. Oxford Journal of Archaeology 1: 331–46. https://doi.org/10.1111/j.1468-0092.1982.tb00318.xCrossRefGoogle Scholar
Frontinus. De aquaeductu, ed. and trans. Bennett, C.E. & McElwain, M.B. 1925. Cambridge: Harvard University Press.Google Scholar
Galán, E. & Aparicio, P. 2005. Materias primas para la industria cerámica. In: García del Cura, M.A. & Cañaveras, J.C., eds. Utilización de rocas y minerales industriales. Madrid: Sociedad Española de Mineralogía, pp. 3148.Google Scholar
Gárate, I., 2002. Artes de la cal. Madrid: Instituto Español de Arquitectura.Google Scholar
Goldsworthy, H. & Zhou, M. 2009. Mortar Studies Towards the Replication of Roman Concrete. Archaeometry, 51: 932–46. https://doi.org/10.1111/j.1475-4754.2009.00450.xCrossRefGoogle Scholar
González-Ruibal, A. 2017. Etnoarqueología, arqueología etnográfica y cultura material. Complutum, 28: 267–83. https://doi.org/10.5209/CMPL.58430CrossRefGoogle Scholar
Gros, P. 2013. L'opus signinum selon Vitruve et dans la terminologie archéologique contemporaine. In: Gros, P., ed. Vitruve et la tradition des traités d'architecture. Rome: École Française de Rome, pp. 473–84.Google Scholar
Guber, R. 2001. La etnografía. Método, campo y reflexividad. Bogotá: Grupo Editorial Norma.Google Scholar
Harper, E. 1934. Lime Slaking. Journal of the American Water Works Association, 26: 750–56.CrossRefGoogle Scholar
Hobbs, L. & Siddall, R. 2010. Cementitious Materials of the Ancient World. In: Ringbom, A. & Hohlfelder, R., eds. Building Roma Aeterna: Current Research on Roman Mortar and Concrete. Helsinki: Societas Archeologica Fennica, pp. 3559.Google Scholar
Hohfelder, R.L., Brandon, C. & Oleson, J.P. 2007. Constructing the Harbour of Caesarea Palaestina, Israel: New Evidence from the ROMACONS Field Campaign of October 2005. International Journal of Nautical Archaeology 36: 409–15. https://doi.org/10.1111/j.1095-9270.2007.00156.xCrossRefGoogle Scholar
Izzo, F., Arizzi, A., Cappelletti, P., Cultrone, G., De Bonis, A., Germinario, C., et al. 2016. The Art of Building in the Roman Period (89 bc–79 ad): Mortars, Plasters and Mosaic Floors from Ancient Stabiae (Naples, Italy). Construction and Building Materials, 117: 129–43. https://doi.org/10.1016/j.conbuildmat.2016.04.101CrossRefGoogle Scholar
Jackson, M., Logan, J.M., Scheetz, B. & Deocampo, D. 2009. Assessment of Material Characteristics of Ancient Concretes, Grande Aula, Markets of Trajan, Rome. Journal of Archaeological Science, 36: 2481–92. https://doi.org/10.1016/j.jas.2009.07.011CrossRefGoogle Scholar
Juan Tovar, L.C. 2014. Las caleras: una actividad olvidada en el artesanado hispanorromano. In: Álvarez, M. Bustamante & Casasola, D. Bernal, eds. Artifices idoneos. Artesanos, talleres y manufacturas en Hispania. Mérida: CSIC, pp. 6174.Google Scholar
Lancaster, L. 2005. Concrete Vaulted Construction in Imperial Rome: Innovations in Context. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lancaster, L. 2021. Mortars and Plasters: How Mortars Were Made. The Literary Sources. Archaeological and Anthropological Science, 13: 192. https://doi.org/10.1007/s12520-021-01395-0CrossRefGoogle Scholar
Lechtman, H. & Hobbs, L. 1987. Roman Concrete and the Roman Architectural Revolution. In: Kingery, W., ed. Ceramic and Civilization, Volume 3. High Technology Ceramics: Past, Present, Future. Westerville (OH): American Ceramic Society, pp. 81128.Google Scholar
Lynch, G. 2017. Hot Lime Mortars for Traditionally Constructed Brickwork. Building Limes Forum Journal, 27: 3849.Google Scholar
Marín Díaz, P. & Dorado Alejos, A. 2014. Aportaciones al estudio de la cadena operativa del mosaico romano: análisis tecnológico de teselas cerámicas de la villa de los Vergeles (Granada). Antiquitas, 26: 227–34.Google Scholar
Martínez Jiménez, J. 2020. Water in Ancient Construction. In: López, E. Sánchez, ed. The Role of Water in Production Processes in Antiquity. Heidelberg: Propylaeum, pp. 1120.Google Scholar
Martínez Jiménez, J. 2022. Water Consumption in Roman Lime Mortar Construction: A Calculating Method. Arqueología de la Arquitectura, 19: e131. https://doi.org/10.3989/arq.arqt.2022.008CrossRefGoogle Scholar
Mogetta, M. 2013. The Origins of Concrete in Rome and Pompeii (unpublished PhD dissertation, University of Michigan).Google Scholar
Morgado, A., Baena Preysler, J. & García González, D. eds. 2011. La investigación experimental aplicada a la arqueología. Granada: University of Granada.Google Scholar
Morgan, G. 1992. Romano-British Plasters and Mortars. Leicester: University of Leicester.Google Scholar
Oleson, J.P. 2010. ‘Harena sine calce’: Building Disasters, Incompetent Architects, and Construction Fraud in Ancient Rome. In: Ringbom, A. & Hohlfelder, R., eds. Building Roma Aeterna: Current Research on Roman Mortar and Concrete. Helsinki: Societas Archeologica Fennica, pp. 9-27.Google Scholar
Oleson, J.P. 2014. The Brindisi Pila Reproduction. In: Oleson, J.P., ed. Building for Eternity: The History of Technology of Roman Concrete Engineering in the Sea. Oxford: Oxbow, pp. 103–20.CrossRefGoogle Scholar
Oleson, J.P. & Jackson, M. 2014. The Technology of Roman Maritime Concrete. In: Oleson, J.P., ed. Building for Eternity: The History of Technology of Roman Concrete Engineering in the Sea. Oxford: Oxbow, pp. 110.Google Scholar
Oleson, J.P., Brandon, C., Cramer, S.M., Cucitore, R., Gotti, E. & Hohlfelder, R.L. 2004. The ROMACONS Project: A Contribution to the Historical and Engineering Analysis of Hydraulic Concrete in Roman Maritime Structures. International Journal of Nautical Archaeology, 33: 199229. https://doi.org/10.1111/j.1095-9270.2004.00020.xCrossRefGoogle Scholar
Ontiveros Ortega, E., Ruiz Agudo, E.M. & Ontiveros Ortega, A. 2018. Thermal Decomposition of the CaO in Traditional Lime Kilns: Applications in Cultural Heritage Conservation. Construction and Building Materials, 190: 349–62. https://doi.org/10.1016/j.conbuildmat.2018.09.059CrossRefGoogle Scholar
Pavía, S. & Caro, S. 2008. An Investigation of Roman Mortar Technology Through Petrographic Analysis of Archaeological Material. Construction and Building Materials, 22: 1807–11. https://doi.org/10.1016/j.conbuildmat.2007.05.003CrossRefGoogle Scholar
Petrella, G. 2008. De calcariis faciendis. Una proposta metodologica per lo studio delle fornaci da calce e per il riconoscimento degli indicatori di produzione. Archeologia dell'Architettura, 13: 2944.Google Scholar
Pliny the Elder. Naturalis historia, ed. and trans. Rackham, H. 1942. Cambridge: Harvard University Press.Google Scholar
Puche Fontanilles, J.M. 2019. Perversiones y versiones, en arqueología, de la terminología técnica latina. El caso del opus signinum. Revista Otras Arqueologías, 4: 524. https://doi.org/10.23914/otarq.v0i4.188Google Scholar
Rappaport, J. 2018. Más allá de la observación participante: la etnografía colaborativa como innovación teórica. In: Leyva, X. et al. eds. Prácticas otras de conocimiento(s): Entre crisis, entre guerras, Tomo I. Buenos Aires: CLACSO, pp. 323–52.CrossRefGoogle Scholar
Rubio Bardon, C. 2011. Los materiales de construcción en los diez libros de arquitectura de Vitruvio. Cahiers des études anciennes, 48: 6187.Google Scholar
Sabio González, R. 2020. El anfiteatro de Mérida y su reocupación durante la Antigüedad tardía: indicios e hipótesis de trabajo. Cuadernos emeritenses, 47: 127–43.Google Scholar
Sánchez López, E. & Martínez Jiménez, J. 2016. Los acueductos de Hispania. Construcción y abandono. Madrid: Fundación Juanelo Turriano.Google Scholar
Sear, F. 1982. Roman Architecture. London: Routledge.Google Scholar
Seymour, L., Maragh, J., Sabatini, P., Di Tommaso, M., Weaver, J. & Masic, A. 2023. Hot Mixing: Mechanistic Insights into the Durability of Ancient Roman Concrete. Science Advances, 9: eadd1602. https://doi.org/10.1126/sciadv.add1602CrossRefGoogle ScholarPubMed
Siddall, R. 2010. From Kitchen to Bathhouse: The Use of Waste Ceramics as Pozzolanic Additives in Roman Mortars. In: Ringbom, Å. & Hohlfelder, R., eds. Building Roma Aeterna: Current Research on Roman Mortar and Concrete. Helsinki: Societas Scientiarum Fennica, pp. 152–68.Google Scholar
Šimunić Buršić, M. 2020. Opus signinum – Roman Concrete Without pulvis puteolanus: Example of the Substructures of Diocletian's Palace. In: Roca, P., Pelà, L. & Molins, C., eds. 12th International Conference on Structural Analysis of Historical Constructions. Barcelona: SAHC, pp. 112.Google Scholar
Snyder, J.R. 2020. From Forest to Trowel: The Economics of Mortar Production in Late Antiquity. In: Courault, C. & Márquez, C., eds. Quantitative Studies and Production Cost of Roman Public Construction. Córdoba: University of Córdoba, pp. 471503.Google Scholar
Talukdar, S. & Banthia, N. 2013. Carbonation in Concrete Infrastructure in the Context of Global Climate Change: Development of a Service Lifespan Model. Construction and Building Materials, 40: 775–82. https://doi.org/10.1016/j.conbuildmat.2012.11.026CrossRefGoogle Scholar
Uğurlu Sağın, E., Engin Duran, H., & Böke, H. 2021. Lime Mortar Technology in Ancient Eastern Roman Provinces. Journal of Archaeological Science Reports, 39: 103132. https://doi.org/10.1016/j.jasrep.2021.103132CrossRefGoogle Scholar
UNILAD 2021. Making Roman Style Concrete [online] [accessed 11 November 2021]. Available at: https://fb.watch/9cCqjJAH7r/Google Scholar
Van Oyen, A. 2017. Finding the Material in ‘Material Culture’: Form and Matter in Roman Concrete. In: Van Oyen, A. & Pitts, M., eds. Materialising Roman Histories. Oxford: Oxbow, pp. 133–54.CrossRefGoogle Scholar
Varro, . Rerum rusticarum, libri tres, ed. and trans. Hooper, W.D. & Ash, H.B. 1934. Cambridge: Harvard University Press.Google Scholar
Vassal, V. 2006. Les pavements d'opus signinum. Technique, décor, fonction architecturale (BAR International Series, 1472). Oxford: Archaeopress.CrossRefGoogle Scholar
Vázquez, M. &. Jiménez Millán, J. 2004. Materias primas ricas en arcilla de las Capas Rojas Triásicas (Norte de Jaén, España) para fabricar materiales cerámicos de construcción. Materiales de Construcción, 54: 520. https://doi.org/10.3989/mc.2004.v54.i273.219CrossRefGoogle Scholar
Vitruvius, . De architectura, ed. and trans. Granger, Frank 1934. Cambridge: Harvard University Press.Google Scholar
Winter, T. 1979. Roman Concrete: The Ascent, Summit, and Decline of an Art. Transactions of the Nebraska Academy of Sciences and Affiliated Societies, 318: 137–43.Google Scholar
Wright, G. 2005. Ancient Building Technology. Leiden: Brill.Google Scholar
Supplementary material: File

Martínez Jiménez et al. supplementary material

Martínez Jiménez et al. supplementary material
Download Martínez Jiménez et al. supplementary material(File)
File 38.5 KB