Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T06:00:39.039Z Has data issue: false hasContentIssue false

Vector hysteresis models

Published online by Cambridge University Press:  16 July 2009

Pavel Krejčí
Affiliation:
Matematický ústav ČSAV, Žitná 25, 115 67 praha 1, Czechoslovakia

Abstract

Following Krasnoselskii & Pokrovskii (1983) we express the constitutive law for the Prandtl–Reuss elastoplastic model in terms of a hysteresis operator, and introduce the vector Ishlinskii model. We investigate some properties (continuity, energy inequalities, dependence on spatial variables) of these operators.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Duvaut, G. & Lions, J.-L. 1972 Les inéquations en mécanique et en physique. Dunod.Google Scholar
Edwards, R. E. 1965 Functional Analysis Theory and Applications. New York: Holt, Rinehart & Winston.Google Scholar
Krasnoselskii, M. A. & Pokrovskh, A. V. 1983 Systems with hysteresis (Russian). Moscow: Nauka.Google Scholar
Krejčí, P. 1988 A monototonicity method for solving hyperbolic problems with hysteresis. Appl. Math. 33, 197203.CrossRefGoogle Scholar
Krejčí, P. 1989 Hysteresis operators – a new approach to evolution differential inequalities. Comment Math. Univ. Carolinae 30 (3), 525536.Google Scholar
Krejčí, P. & Lovicar, V. 1990 Continuity of hysteresis operators in Sobolev spaces. Appl. Math. 35, 6066.CrossRefGoogle Scholar
Nečas, J. & Hlaváček, I. 1981 Mathematical theory of elastic and elasto-plastic bodies: an introduction. Amsterdam: Elsevier.Google Scholar
Visintin, A. 1987 Rheological models and hysteresis effects. Rend. Sem. Mat. Univ. Padova 77, 213243.Google Scholar