Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-04-30T16:27:56.566Z Has data issue: false hasContentIssue false

Spreading dynamics of a diffusive epidemic model with free boundaries and two delays

Published online by Cambridge University Press:  11 August 2023

Qiaoling Chen*
Affiliation:
School of Science, Xi’an Polytechnic University, Xi’an, PR China School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, PR China
Sanyi Tang
Affiliation:
School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, PR China
Zhidong Teng
Affiliation:
College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, PR China
Feng Wang
Affiliation:
School of Mathematics and Statistics, Xidian University, Xi’an, PR China
*
Corresponding author: Qiaoling Chen; Email: qiaolingf@126.com

Abstract

A delayed reaction-diffusion system with free boundaries is investigated in this paper to understand how the bacteria spread spatially to larger area from the initial infected habitat. Under the assumptions that the nonlinearities are of monostable type and the initial values satisfy some compatible condition, we show that the free boundary problem is well-posed and discuss the long-time behaviour of solution (including spreading and vanishing) in terms of the spatial-temporal risk index. Furthermore, to determine the spreading speed of free boundaries when spreading occurs, we first study the distribution of roots of a transcendental equation containing a polynomial of degree four and then establish the existence and uniqueness of monotone solution to a delay-induced nonlocal semi-wave problem by employing the approximation method, lower-upper solutions technique and Schauder fixed point theorem. It is shown that time delays slow down the spreading of bacteria.

Type
Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, I., Beak, S. & Lin, Z. G. (2016) The spreading fronts of an infective environment in a man-environment-man epidemic model. Appl. Math. Model. 40(15-16), 70827101.10.1016/j.apm.2016.02.038CrossRefGoogle Scholar
Ali, M., Nelson, A. R., Lopez, A. L. & Sack, D. (2015) Updated global burden of cholera in endemic countries. PLoS Negl. Trop. Dis. 9(6), e0003832.10.1371/journal.pntd.0003832CrossRefGoogle ScholarPubMed
Cao, J. F., Du, Y. H., Li, F. & Li, W. T. (2019) The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries. J. Funct. Anal. 277(8), 27722814.10.1016/j.jfa.2019.02.013CrossRefGoogle Scholar
Cao, J. F., Li, W. T., Wang, J. & Yang, F. Y. (2017) A free boundary problem of a diffusive SIRS model with nonlinear incidence. Z. Angew. Math. Phys. 68(2), 39.10.1007/s00033-017-0786-8CrossRefGoogle Scholar
Cao, J. F., Li, W. T. & Yang, F. Y. (2017) Dynamics of a nonlocal SIS epidemic model with free boundary. Discrete Contin. Dyn. Syst. Ser. B 22(2), 247266.Google Scholar
Capasso, V. & Paveri-Fontana, S. L. (1979) A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. Rev. Epidemiol. Santé Publique 27, 121132.Google ScholarPubMed
Capasso, V. (1993). Mathematical Structures of Epidemic Systems, Springer, Berlin.10.1007/978-3-540-70514-7CrossRefGoogle Scholar
Capasso, V. & Maddalena, L. (1981) A nonlinear diffusion system modelling the spread of orofaecal diseases. In: Lakshmikantham, V. (editor), Nonlinear Phenomena in Mathematical Sciences, Academic Press, New York, pp. 207217.Google Scholar
Capasso, V. & Maddalena, L. (1981) Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases. J. Math. Biol. 13(2), 173184.10.1007/BF00275212CrossRefGoogle ScholarPubMed
Chen, Q. L., Li, F. Q., Teng, Z. D. & Wang, F. (2021) Global dynamics and asymptotic spreading speeds for a partially degenerate epidemic model with time-delay and free boundaries. J. Dyn. Differ. Equ. 34(2), 12091236. DOI: 10.1007/s10884-020-09934-4.10.1007/s10884-020-09934-4CrossRefGoogle Scholar
Ding, W. W., Du, Y. H. & Liang, X. (2019) Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 2: Spreading speed. Ann. Inst. Henri Poincare Anal. Non Lineaire 36, 15391573.10.1016/j.anihpc.2019.01.005CrossRefGoogle Scholar
Ding, W. W., Peng, R. & Wei, L. (2017) The diffusive logistic model with a free boundary in a heterogeneous time-periodic environment. J. Differ. Equ. 263(5), 27362779.CrossRefGoogle Scholar
Du, Y. H., Guo, Z. M. & Peng, R. (2013) A diffusive logistic model with a free boundary in time-periodic environment. J. Funct. Anal. 265(9), 20892142.10.1016/j.jfa.2013.07.016CrossRefGoogle Scholar
Du, Y. H., Li, F. & Zhou, M. L. (2021) Semi-wave and spreading speed of the nonlocal Fisher-KPP equation with free boundaries. J.~Math. Pures Appl. 154, 3066.10.1016/j.matpur.2021.08.008CrossRefGoogle Scholar
Du, Y. H. & Lin, Z. G. (2010) Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal. 42(1), 377405.10.1137/090771089CrossRefGoogle Scholar
Du, Y. H. & Lou, B. D. (2015) Spreading and vanishing in nonlinear diffusion problems with free boundaries. J. Eur. Math. Soc. 17, 26732724.10.4171/JEMS/568CrossRefGoogle Scholar
Fang, J., Wei, J. J. & Zhao, X. Q. (2008) Spatial dynamics of a nonlocal and time-delayed reaction-diffusion system. J. Differ. Equ. 245(10), 27492770.10.1016/j.jde.2008.09.001CrossRefGoogle Scholar
Ge, J., Kim, K., Lin, Z. G. & Zhu, H. P. (2015) A SIS reaction-diffusion-advection model in a low-risk and high-risk domain. J. Differ. Equ. 259(10), 54865509.10.1016/j.jde.2015.06.035CrossRefGoogle Scholar
Hsu, C. H. & Yang, T. S. (2013) Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models. Nonlinearity 26(1), 121139.10.1088/0951-7715/26/1/121CrossRefGoogle Scholar
Huang, H. M. & Wang, M. X. (2019) A nonlocal SIS epidemic problem with double free boundaries. Z. Angew. Math. Phys. 70(4), 109.10.1007/s00033-019-1156-5CrossRefGoogle Scholar
Li, B. T. & Zhang, L. (2011) Travelling wave solutions in delayed cooperative systems. Nonlinearity 24(6), 17591776.10.1088/0951-7715/24/6/004CrossRefGoogle Scholar
Liang, X. & Zhao, X. Q. (2007) Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 140. Erratum: Liang, X. & Zhao, X. Q. (2008) Commun. Pure Appl. Math. 61, 137–138.CrossRefGoogle Scholar
Lin, Z. G., Zhao, Y. N. & Zhou, P. (2013) The infected frontier in an SEIR epidemic model with infinity delay. Discrete Contin. Dyn. Syst. Ser. B 18, 23552376.Google Scholar
Lin, Z. G. & Zhu, H. P. (2017) Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary. J. Math. Biol. 75(6-7), 13811409.10.1007/s00285-017-1124-7CrossRefGoogle ScholarPubMed
Ma, S. W. (2001) Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J. Differ. Equ. 171(2), 294314.10.1006/jdeq.2000.3846CrossRefGoogle Scholar
Peng, R. & Zhao, X. Q. (2013) The diffusive logistic model with a free boundary and seasonal succession. Discrete Contin. Dyn. Syst. 33(5), 20072031.CrossRefGoogle Scholar
Smith, H. L. (1995). Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence, RI.Google Scholar
Sun, N. K. & Fang, J. (2019) Propagation dynamics of Fisher-KPP equation with time delay and free boundaries. Calc. Var. Partial Differ. Equ. 58(4), 148.CrossRefGoogle Scholar
Sun, N. K., Lou, B. D.& Zhou, M. L. (2017) Fisher-KPP equation with free boundaries and time-periodic advections. Calc. Var. Partial Differ. Equ. 56(3), 61.10.1007/s00526-017-1165-1CrossRefGoogle Scholar
Tarboush, A. K., Lin, Z. G. & Zhang, M. Y. (2017) Spreading and vanishing in a West Nile virus model with expanding fronts. Sci. China Math. 60(5), 841860.10.1007/s11425-016-0367-4CrossRefGoogle Scholar
Thieme, H. R. & Zhao, X. Q. (2003) Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models. J. Differ. Equ. 195(2), 430470.CrossRefGoogle Scholar
Wang, M. X. (2016) A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment. J. Funct. Anal. 270(2), 483508.CrossRefGoogle Scholar
Wang, M. X. (2019) Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete Contin. Dyn. Syst. Ser. B 24(2), 415421.Google Scholar
Wang, R. & Du, Y. H. (2021) Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete Contin. Dyn. Syst. Ser. B 26(4), 22012238.CrossRefGoogle Scholar
Wang, Z. G., Nie, H. & Du, Y. H. (2019) Spreading speed for a West Nile virus model with free boundary. J. Math. Biol. 79(2), 433466.10.1007/s00285-019-01363-2CrossRefGoogle Scholar
Wu, C. H. (2018) Biased movement and the ideal free distribution in some free boundary problems. J. Differ. Equ. 265(9), 42514282.CrossRefGoogle Scholar
Wu, J. H. & Zou, X. F. (2001) Traveling wave fronts of reaction-diffusion systems with delay. J. Dyn. Differ. Equ. 13(3), 651687.CrossRefGoogle Scholar
Wu, S. L. & Hsu, C. H. (2016) Existence of entire solutions for delayed monostable epidemic models. Trans. Am. Math. Soc. 368(9), 60336062.CrossRefGoogle Scholar
Xu, D. S. & Zhao, X. Q. (2005) Erratum to: “Bistable waves in an epidemic model” [J. Dynam. Diff. Eq. 16, 679–707 (2004)]. J. Dyn. Differ. Equ. 17, 219247.10.1007/s10884-005-6294-0CrossRefGoogle Scholar
Zhao, M., Li, W. T. & Ni, W. J. (2020) Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete Contin. Dyn. Syst. B 25(3), 981999.Google Scholar
Zhao, X. Q. (2017) Dynamical Systems in Population Biology, 2nd ed., Springer, New York.10.1007/978-3-319-56433-3CrossRefGoogle Scholar
Zhao, X. Q. & Jing, Z. J. (1996) Global asymptotic behavior in some cooperative systems of functional differential equations. Canad. Appl. Math. Q. 4, 421444.Google Scholar
Zhao, X. Q. & Wang, W. D. (2004) Fisher waves in an epidemic model. Discrete Contin. Dyn. Syst. Ser. B 4(4), 11171128.Google Scholar
Zhao, X. Y. & Hu, B. (2020) Symmetry-breaking bifurcation for a free boundary tumor model with time delay. J. Differ. Equ. 269(3), 18291862.CrossRefGoogle Scholar