Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-01T10:21:22.928Z Has data issue: false hasContentIssue false

Global existence of solutions for a chemotaxis-type system arising in crime modelling

Published online by Cambridge University Press:  27 November 2012

RAÚL MANÁSEVICH
Affiliation:
Centro de Modelamiento Matemático and Departamento de Ingeniería Matemática, Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile email: manasevi@dim.uchile.cl
QUOC HUNG PHAN
Affiliation:
Université Paris 13, Sorbonne Paris Cité, Laboratoire Analyse, Géométrie et Applications, CNRS, UMR 7539, 93430 Villetaneuse, France email: phanqh@math.univ-paris13.fr, souplet@math.univ-paris13.fr
PHILIPPE SOUPLET
Affiliation:
Université Paris 13, Sorbonne Paris Cité, Laboratoire Analyse, Géométrie et Applications, CNRS, UMR 7539, 93430 Villetaneuse, France email: phanqh@math.univ-paris13.fr, souplet@math.univ-paris13.fr

Abstract

We consider a nonlinear, strongly coupled, parabolic system arising in the modelling of burglary in residential areas. This model appeared in Pitcher (Eur. J. Appl. Math., 2010, Vol. 21, pp. 401–419), as a more realistic version of the Short et al. (Math. Models Methods Appl. Sci., 2008, Vol. 18, pp. 1249–1267) model. The system under consideration is of chemotaxis-type and involves a logarithmic sensitivity function and specific interaction and relaxation terms. Under suitable assumptions on the data of the problem, we give a rigorous proof of the existence of a global and bounded, classical solution, thereby solving a problem left open in previous work on this model. Our proofs are based on the construction of approximate entropies and on the use of various functional inequalities. We also provide explicit numerical conditions for global existence when the domain is a square, including concrete cases involving values of the parameters which are expected to be physically relevant.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Acosta, G. & Durán, R. G. (2004) An optimal Poincaré inequality in L 1 for convex domains. Proc. Amer. Math. Soc. 132, 195202.Google Scholar
[2]Aida, M., Osaki, K., Tsujikawa, T., Yagi, A. & Mimura, M. (2005) Chemotaxis and growth system with singular sensitivity function. Nonlinear Anal. Real World Appl. 6, 323336.CrossRefGoogle Scholar
[3]Berestycki, H. & Nadal, J.-P. (2010) Self-organised critical hot spots of criminal activity. Eur. J. Appl. Math. 21, 371399.Google Scholar
[4]Biler, P. (1998) Local and global solvability of some parabolic systems modeling chemotaxis. Adv. Math. Sci. Appl. 8, 715743.Google Scholar
[5]Biler, P. (1999) Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl. 9, 347359.Google Scholar
[6]Blanchet, A. (2011) On the parabolic-elliptic Patlak–Keller–Segel system in dimension 2 and higher. Preprint (arXiv:1109.1543).Google Scholar
[7]Brezis, H. (1983) Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maî trise [Collection of applied mathematics for the Master's Degree]. Masson, Paris, Théorie et applications [Theory and applications].Google Scholar
[8]Cantrell, S., Cosner, C. & Manásevich, R. (2012) Global bifurcation of solutions for crime modeling equations. SIAM J. Math. Anal. 44, 13401358.CrossRefGoogle Scholar
[9]DiFrancesco, M. & Rosado, J. (2008) Fully parabolic Keller–Segel model for chemotaxis with prevention of overcrowding. Nonlinearity 21, 27152730.Google Scholar
[10]Gajewski, H. & Zacharias, K. (1998) Global behaviour of a reaction–diffusion system modelling chemotaxis. Math. Nachr. 195, 77114.CrossRefGoogle Scholar
[11]Herrero, M. A. & Velázquez, J. J. L. (1997) A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Super. Pisa Cl. Sci. 24, 633683.Google Scholar
[12]Hillen, T. & Painter, K. J. (2009) A user's guide to PDE models for chemotaxis. J. Math. Biol. 58, 83217.CrossRefGoogle ScholarPubMed
[13]Horstmann, D. (2003) From 1970 until present: The Keller–Segel model in chemotaxis and its consequences. Jahresber. der DMV 105, 103165.Google Scholar
[14]Horstmann, D. & Winkler, M. (2005) Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52107.Google Scholar
[15]Keller, E. F. & Segel, L. A. (1970) Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399415.Google Scholar
[16]Nagai, T. & Senba, T. (1997) Behavior of radially symmetric solutions of a system related to chemotaxis. Nonlinear Anal. 30, 38373842.CrossRefGoogle Scholar
[17]Nagai, T., Senba, T. & Yoshida, K. (1997) Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411433.Google Scholar
[18]Osaki, K., Tsujikawa, T., Yagi, A. & Mimura, M. (2002) Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. TMA 51, 119144.Google Scholar
[19]Pitcher, A. B. (2010) Adding police to a mathematical model of burglary. Eur. J. Appl. Math. 21, 401419.Google Scholar
[20]Rodriguez, N. (2012) On the global well-posedness theory for a class of PDE models for criminal activity at http://www.sciencedirect.com/science/article/pii/S0167278912001960 Physica D, Available online 7 August 2012.Google Scholar
[21]Rodriguez, N. A. & Bertozzi, L. (2010) Local existence and uniqueness of solutions to a PDE model for criminal behavior. Math. Models Methods Appl. Sci. 20, 14251457.CrossRefGoogle Scholar
[22]Ryu, S.-U. & Yagi, A. (2001) Optimal control of Keller–Segel equations. J. Math. Anal. Appl., 256, 4566.CrossRefGoogle Scholar
[23]Short, M. B, Bertozzi, A. L. & Brantingham, P. J. (2010) Nonlinear patterns in urban crime: Hotspots, bifurcations, and suppression. SIAM J. Appl. Dyn. Syst. 9, 462483.Google Scholar
[24]Short, M. B, D'Orsogna, M. R., Pasour, V. B., Tita, G. E., Brantingham, P. J., Bertozzi, A. L. & Chayes, L. B. (2008) A statistical model of criminal behavior. Math. Models Methods Appl. Sci. 18, 12491267.CrossRefGoogle Scholar
[25]Stinner, C. & Winkler, M. (2011) Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Anal. Real World Appl. 12, 37273740.Google Scholar