Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-4k54s Total loading time: 0.405 Render date: 2021-11-30T15:32:04.938Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Periodic pulsating dynamics of slow–fast delayed systems with a period close to the delay

Published online by Cambridge University Press:  22 December 2017

P. KRAVETC
Affiliation:
Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, USA email: pxk142530@utdallas.edu, dmitry.rachinskiy@utdallas.edu
D. RACHINSKII
Affiliation:
Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, USA email: pxk142530@utdallas.edu, dmitry.rachinskiy@utdallas.edu
A. VLADIMIROV
Affiliation:
Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany email: vladimir@wias-berlin.de Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia

Abstract

We consider slow–fast delayed systems and discuss pulsating periodic solutions, which are characterised by specific properties that (a) the period of the periodic solution is close to the delay, and (b) these solutions are formed close to a bifurcation threshold. Such solutions were previously found in models of mode-locked lasers. Through a case study of population models, this work demonstrates the existence of similar solutions for a rather wide class of delayed systems. The periodic dynamics originates from the Hopf bifurcation on the positive equilibrium. We show that the continuous transformation of the periodic orbit to the pulsating regime is simultaneous with multiple secondary almost resonant Hopf bifurcations, which the equilibrium undergoes over a short interval of parameter values. We derive asymptotic approximations for the pulsating periodic solution and consider scaling of the solution and its period with the small parameter that measures the ratio of the time scales. The role of competition for the realisation of the bifurcation scenario is highlighted.

Type
Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

P.K. and D.R. acknowledge the support of NSF through Grant DMS-1413223.

References

[1] Arkhipov, R., Pimenov, A., Radziunas, M., Rachinskii, D., Vladimirov, A. G., Arsenijevic, D., Schmeckebier, H. & Bimberg, D. (2013) Hybrid mode-locking in semiconductor lasers: Simulations, analysis and experiments. IEEE J. Sel. Top. Quantum Electron. 19, 1100208.CrossRefGoogle Scholar
[2] Arkhipov, R. M., Amann, A. & Vladimirov, A. G. (2015) Pulse repetition-frequency multiplication in a coupled cavity passively mode-locked semiconductor lasers. J. Appl. Phys. B: 118, 539548.CrossRefGoogle Scholar
[3] Arkhipov, R. M., Habruseva, T., Pimenov, A., Radziunas, M., Huyet, G. & Vladimirov, A. G. (2016) Semiconductor mode-locked lasers with coherent dual mode optical injection: Simulations, analysis and experiment. J. Opt. Soc. Am. B 33, 351359.CrossRefGoogle Scholar
[4] Banerjee, S., Mukhopadhyay, B. & Bhattacharyya, R. (2010) Effect of maturation and gestation delays in a stage structure predator prey model. J. Appl. Math. Inform. 28 (5–6), 13791393.Google Scholar
[5] Carr, T. W., Haberman, R. & Erneux, T. (2012) Delay-periodic solutions and their stability using averaging in delay-differential equations, with applications. Phys. D: Nonlinear Phenom. 241 (18), 15271531.CrossRefGoogle Scholar
[6] Carr, T. W., Schwartz, I. B., Kim, M. Y. & Roy, R. (2006) Delayed-mutual coupling dynamics of lasers: Scaling laws and resonances. SIAM J. Dyn. Syst. 5, 699725.CrossRefGoogle Scholar
[7] Delfyett, P. J., Gee, S., Choi, M.-T., Izadpanah, H., Lee, W., Ozharar, S., Quinlan, F. & Yilmaz, T. (2006) Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications. J. Lightwave Technol. 24 (7), 27012719.CrossRefGoogle Scholar
[8] Erneux, T. (2009) Applied Delay Differential Equations, Springer, Springer-Verlag, New York.Google Scholar
[9] Erneux, T. & Mandel, P. (1995) Minimal equations for antiphase dynamics in multimode lasers. Phys. Rev. A 52, 41374144.CrossRefGoogle ScholarPubMed
[10] Fiedler, B., Flunkert, V., Hövel, P. & Schöll, E. (2010) Delay stabilization of periodic orbits in coupled oscillator systems. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 368, 319341.CrossRefGoogle ScholarPubMed
[11] Fowler, A. C. (1982) An asymptotic analysis of the delayed logistic equation when the delay is large. IMA J. Appl. Math. 28, 4149.CrossRefGoogle Scholar
[12] Fowler, A. C. (2005) Asymptotic methods for delay equations. J. Eng. Math. 53, 271290.CrossRefGoogle Scholar
[13] Gourley, S. A. & Kuang, Y. (2004) A stage structured predator-prey model and its dependence on maturation delay and death rate. J. Math. Biol. 49 (2), 188200.CrossRefGoogle ScholarPubMed
[14] Grigorieva, E. V. & Kashchenko, S. A. (1993) Complex temporal structures in models of a laser with optoelectronic delayed feedback. Opt. Commun. 102, 183192.CrossRefGoogle Scholar
[15] Habruseva, T., Hegarty, S. P., Vladimirov, A. G., Pimenov, A., Rachinskii, D., Rebrova, N., Viktorov, E. A. & Huyet, G. (2010) Bistable regimes in an optically injected mode-locked laser. Opt. Express 20, 2557225583.CrossRefGoogle Scholar
[16] Haus, H. (1975) Theory of mode locking with a slow saturable absorber. IEEE J. Quantum Electron. 11 (9), 736746.CrossRefGoogle Scholar
[17] Haus, H. A. (2000) Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6 (6), 11731185.CrossRefGoogle Scholar
[18] Hooton, E. W. & Amann, A. (2012) Analytical limitation for time-delayed feedback control in autonomous systems. Phys. Rev. Lett. 109 (15), 154101.CrossRefGoogle Scholar
[19] Jaurigue, L., Pimenov, A., Rachinskii, D., Schöll, E., Lüdge, K. & Vladimirov, A. G. (2015) Timing jitter of passively mode-locked semiconductor lasers subject to optical feedback: A semi-analytic approach. Phys. Rev. A 92, 053807.CrossRefGoogle Scholar
[20] Jiang, L. A., Ippen, E. P. & Yokoyama, H. (2007) Ultrahigh-Speed Optical Transmission Technology, Springer, Springer-Verlag Berlin, Heidelberg.Google Scholar
[21] Kaiser, R. & Hüttl, B. (2007) Monolithic 40-ghz mode-locked mqw dbr lasers for high-speed optical communication systems. IEEE J. Sel. Top. Quantum Electron. 13 (1), 125135.CrossRefGoogle Scholar
[22] Kevorkian, J. & Cole, J. D. (1980) Perturbation Methods in Applied Mathematics, Springer, Springer-Verlag, New York.Google Scholar
[23] Kuramoto, M., Kitajima, N., Guo, H., Furushima, Y., Ikeda, M. & Yokoyama, H. (2007) Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source. Opt. Lett. 32 (18), 27262728.CrossRefGoogle ScholarPubMed
[24] Lichtner, M., Wolfrum, M. & Yanchuk, S. (2011) The spectrum of delay differential equations with large delay. SIAM J. Math. Anal. 43 (2), 788802.CrossRefGoogle Scholar
[25] May, R. M. & Anderson, R. M. (1978) Regulation and stability of host-parasite population interactions: II. Destabilizing processes. J. Anim. Ecol. 47 (1), 249267.CrossRefGoogle Scholar
[26] Mitchell, J. L. & Carr, T. W. (2010) Oscillations in an intrahost model of plasmodium falciparum malaria due to cross-reactive immune response. Bull. Math. Biol. 72, 590610.CrossRefGoogle Scholar
[27] New, G. H. C. (1974) Pulse evolution in mode-locked quasi-continuous lasers. IEEE J. Quantum Electron. 10 (2), 115124.CrossRefGoogle Scholar
[28] Nizette, M., Rachinskii, D., Vladimirov, A. & Wolfrum, M. (2006) Pulse interaction via gain and loss dynamics in passive mode locking. Phys. D: Nonlinear Phenom. 218 (1), 95104.CrossRefGoogle Scholar
[29] Pieroux, D. & Erneux, T. (1996) Strongly pulsating lasers with delay. Phys. Rev. A 53, 27652771.CrossRefGoogle ScholarPubMed
[30] Pieroux, D., Erneux, T. & Otsuka, K. (1994) Minimal model of a class-B laser with delayed feedback: Cascading branching of periodic solutions and period-doubling bifurcation. Phys. Rev. E 50, 18221829.CrossRefGoogle ScholarPubMed
[31] Pimenov, A., Habruseva, T., Rachinskii, D., Hegarty, S. P., Guillaume, H. & Vladimirov, A. G. (2014) Effect of dynamical instability on timing jitter in passively mode-locked quantum-dot lasers. Opt. Lett. 39, 68156818.CrossRefGoogle Scholar
[32] Pimenov, A., Viktorov, E. A., Hegarty, S. P., Habruseva, T., Huyet, G. & Vladimirov, A. G. (2014) Bistability and hysteresis in an optically injected two-section semiconductor laser. Phys. Rev. E 89, 052903.CrossRefGoogle Scholar
[33] Puzyrev, D., Vladimirov, A. G., Gurevich, S. V. & Yanchuk, S. (2016) Modulational instability and zigzagging of dissipative solitons induced by delayed feedback. Phys. Rev. A 93, 041801(R).CrossRefGoogle Scholar
[34] Pyragas, K. (1992) Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421428.CrossRefGoogle Scholar
[35] Rachinskii, D., Vladimirov, A., Bandelow, U., Hüttl, B. & Kaiser, R. (2006) Q-switching instability in a mode-locked semiconductor laser. JOSA B 23 (4), 663670.CrossRefGoogle Scholar
[36] Ruan, S. (2009) On nonlinear dynamics of predator-prey models with discrete delay. Math. Model. Nat. Phenom. 4 (02), 140188.CrossRefGoogle Scholar
[37] Schwartz, I. B. & Smith, H. L. (1983) Infinite subharmonic bifurcation in an SEIR epidemic model. J. Math. Biol. 18, 233253.CrossRefGoogle Scholar
[38] Taylor, M. L. & Carr, T. W. (2009) An sir epidemic model with partial temporary immunity modeled with delay. J. Math. Biol. 59, 841880.CrossRefGoogle Scholar
[39] Tuckerman, L. S. & Barkley, D. (1990) Bifurcation analysis of the Eckhaus instability. Physica D 46, 5786.CrossRefGoogle Scholar
[40] Vladimirov, A. G., Rachinskii, D. & Wolfrum, M. (2012) Modeling of passively mode-locked semiconductor lasers. In: Lüdge, K. (editor), Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, chapter VIII, John Wiley & Sons, Wiley-VCH Verlag GmbH & Co. KGaA. pp. 189222.Google Scholar
[41] Vladimirov, A. G. & Turaev, D. (2005) Model for passive mode locking in semiconductor lasers. Phys. Rev. A 72 (3), 033808.CrossRefGoogle Scholar
[42] Vladimirov, A. G., Turaev, D. & Kozyreff, G. (2004) Delay differential equations for mode-locked semiconductor lasers. Opt. Lett. 29 (11), 12211223.CrossRefGoogle ScholarPubMed
[43] Vladimirov, A. G. & Turaev, D. V. (2004) A new model for a mode-locked semiconductor laser. Radiophys. Quantum Electron. 47 (10–11), 769776.CrossRefGoogle Scholar
[44] Vladimirov, A. G., Wolfrum, M., Fiol, G., Arsenijevic, D., Bimberg, D., Viktorov, E., Mandel, P. & Rachinskii, D. (2010) Locking characteristics of a 40-GHz hybrid mode-locked monolithic quantum dot laser. In: SPIE Photonics Europe, International Society for Optics and Photonics, pp. 77200Y–77200Y.Google Scholar
[45] Xu, R., Chaplain, M. A. J. & Davidson, F. A. (2004) Persistence and stability of a stage-structured predator-prey model with time delays. Appl. Math. Comput. 150, 259277.Google Scholar
[46] Yanchuk, S. & Wolfrum, M. (2006) Eckhaus instability in systems with large delay. Phys. Rev. Lett. 6, 220201.Google Scholar
[47] Yanchuk, S. & Wolfrum, M. (2010) A multiple time scale approach to the stability of external cavity modes in the Lang-Kobayashi system using the limit of large delay. SIAM J. Appl. Dyn. Syst. 9 (2), 519535.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Periodic pulsating dynamics of slow–fast delayed systems with a period close to the delay
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Periodic pulsating dynamics of slow–fast delayed systems with a period close to the delay
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Periodic pulsating dynamics of slow–fast delayed systems with a period close to the delay
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *