Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-31T18:06:54.827Z Has data issue: false hasContentIssue false

Uniqueness of the measure with full dimension on sofic affine-invariant subsets of the 2-torus

Published online by Cambridge University Press:  12 August 2009

ERIC OLIVIER*
Affiliation:
Université de Provence, LATP (CNRS-UMR 6632), Marseille, France (email: eric.olivier@univ-provence.fr)

Abstract

We consider the variational principle for dimension on compact subsets of the 2-torus which are invariant under a non-conformal expanding diagonal endomorphism. Condition (H) ensures that the invariant measures with full dimension are the equilibrium states of some potential function. This result applies to the problem of uniqueness of the measure with full dimension on the sofic affine-invariant sets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bedford, T.. Crinkly curves, Markov partitions and dimension. PhD Thesis, University of Warwick, 1984.Google Scholar
[2]Berbee, H.. Chains with infinite connections: uniqueness and Markov representation. Probab. Theory Related Fields 76 (1987), 243253.CrossRefGoogle Scholar
[3]Bowen, R.. Some systems with unique equilibrium states. Math. Syst. Theory 8 (1974), 193202.CrossRefGoogle Scholar
[4]Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics, 470). Springer, Berlin, 1975.CrossRefGoogle Scholar
[5]Boyle, M., Kitchens, C. and Marcus, B.. A note on minimal covers for sofic systems. Proc. Amer. Math. Soc. 95 (1985), 403411.CrossRefGoogle Scholar
[6]Breiman, L.. Probability. Addison-Wesley, Reading, MA, 1968.Google Scholar
[7]Buzzi, J. and Sarig, O.. Uniqueness of equilibrium measures for countable Markov shifts and multi-dimensional piecewise expanding maps. Ergod. Th. & Dynam. Sys. 23 (2003), 13831400.CrossRefGoogle Scholar
[8]Denker, M., Grillenberger, C. and Sigmund, K.. Ergodic Theory on Compact Spaces (Lecture Notes in Mathematics, 527). Springer, Berlin, 1976.CrossRefGoogle Scholar
[9]Denker, M. and Gordin, M.. Remarks on Gibbs measures for fibred systems. Problems on Complex Dynamical Systems (RIMS Kokyuroku Series, 1042). Kyoto University, Kyoto, 1998, pp. 110.Google Scholar
[10]Denker, M. and Gordin, M.. Gibbs measures for fibred systems. Adv. Math. 148 (1999), 161192.CrossRefGoogle Scholar
[11]Denker, M., Gordin, M. and Heinemann, S.. On the relative variational principle for fibred expanding maps. Ergod. Th. & Dynam. Sys. 22 (2002), 757782.CrossRefGoogle Scholar
[12]Douady, A. and Oesterlé, J.. Dimension de Hausdorff des attracteurs. C. R. Acad. Sci. Paris 290 (1980), 11351138.Google Scholar
[13]Dumont, J. M., Sidorov, N. and Thomas, A.. Number of representations related to a linear recurrent basis. Acta Arith. 88 (1999), 371394.CrossRefGoogle Scholar
[14]Falconer, K.. The Geometry of Fractal Sets. Cambridge University Press, Cambridge, 1985.CrossRefGoogle Scholar
[15]Falconer, K.. The dimension of self-affine fractals II. Math. Proc. Phil. Soc. 111 (1992), 169179.CrossRefGoogle Scholar
[16]Feng, D.-J., Lau, K.-S. and Wang, X.-Y.. Some exceptional phenomena in multifractal formalization: Part II. Asian J. Math. 9 (2005), 473488.CrossRefGoogle Scholar
[17]Feng, D.-J. and Olivier, E.. Multifractal analysis of weak Gibbs measures and phase transition—Application to some Bernoulli convolutions. Ergod. Th. & Dynam. Sys. 23 (2003), 17511784.CrossRefGoogle Scholar
[18]Furstenberg, H.. Disjointness in ergodic theory, minimal sets and a problem in Diophantine approximation. Math. Syst. Theory 1 (1967), 149.CrossRefGoogle Scholar
[19]Gatzouras, D. and Peres, Y.. Invariant measures of full dimension for some expanding maps. Ergod. Th. & Dynam. Sys. 17 (1997), 147167.CrossRefGoogle Scholar
[20]Gatzouras, D. and Peres, Y.. The variational principle for Hausdorff dimension: a survey. Ergodic Theory of ℤd Actions (London Mathematical Society Lecture Note Series, 228). Cambridge University Press, Cambridge, 1996, pp. 113125.Google Scholar
[21]Gurevic, B.-M.. Topological entropy of a countable Markov chain. Dokl. Akad. Nauk. SSSR 187 (1969), 715718.Google Scholar
[22]Gurevic, B.-M.. Shift entropy and Markov measures in the space of paths on a countable graph. Dokl. Akad. Nauk. SSSR 192 (1970), 963965.Google Scholar
[23]Haydn, N. T. A. and Ruelle, D.. Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification. Comm. Math. Phys. 148(1) (1992), 155167.CrossRefGoogle Scholar
[24]Heuter, I. and Lalley, S.. Falconer’s formula for the Hausdorff dimension of a self-affine set in ℝ2. Ergod. Th. & Dynam. Sys. 17 (1997), 7797.Google Scholar
[25]Hu, T. and Lau, K.-S.. On the multifractal structure of convolution of Cantor measure. Adv. in Appl. Math. 27 (2001), 116.CrossRefGoogle Scholar
[26]Keane, M.. Strongly mixing g-measures. Invent. Math. 16 (1972), 309324.CrossRefGoogle Scholar
[27]Kenyon, R. and Peres, Y.. Measures of full dimension on affine-invariant sets. Ergod. Th. & Dynam. Sys. 16 (1996), 307323.CrossRefGoogle Scholar
[28]Kenyon, R. and Peres, Y.. Hausdorff dimensions of sofic affine-invariant sets. Israel J. Math. 94 (1996), 157178.CrossRefGoogle Scholar
[29]Lau, K.-S. and Wang, X.-Y.. Some exceptional phenomena in multifractal formalization: Part I. Asian J. Math. 9 (2005), 275294.CrossRefGoogle Scholar
[30]Ledrappier, F.. Principe variationnel et systèmes dynamiques symboliques. Z. Wahr. Verw. Geb. 30 (1974), 185202.CrossRefGoogle Scholar
[31]Ledrappier, F. and Walters, P.. A relativised variational principle for continuous transformations. J. London Math. Soc. 16 (1976), 568576.Google Scholar
[32]Ledrappier, F. and Young, L.-S.. The metric entropy of diffeomorphisms. Part 1: characterisation of measures satisfying Pesin’s entropy formula; Part 2: relation between entropy, exponents and dimension. Ann. of Math. (2) 122 (1985), 540574.CrossRefGoogle Scholar
[33]Luzia, N.. A variational principle for the dimension for a class of non-conformal repellers. Ergod. Th. & Dynam. Sys. 26 (2006), 821845.CrossRefGoogle Scholar
[34]Luzia, N.. Measure of full dimension for some non-conformal repellers. Discrete Contin. Dyn. Syst. to appear.Google Scholar
[35]Mauldin, R. D. and Urbański, M.. Gibbs states on the symbolic space over an infinite alphabet. Israel J. Math. 125 (2001), 93130.CrossRefGoogle Scholar
[36]McMullen, C.. The Hausdorff dimension of general Sierpiński carpets. Nagoya Math. J. 96 (1984), 19.CrossRefGoogle Scholar
[37]Parry, W.. Intrinsic Markov chains. Trans. Amer. Math. Soc. 112 (1964), 5566.CrossRefGoogle Scholar
[38]Parry, W. and Pollicott, M.. Zeta functions and the periodic structure of hyperbolic dynamics. Astérisque 187188 (1990), 1268.Google Scholar
[39]Pesin, Y.. Dimension Theory in Dynamical Systems: Contemporary Views and Applications (Chicago Lectures in Mathematics). University of Chicago Press, Chicago, 1997.CrossRefGoogle Scholar
[40]Peyrière, J.. An introduction to fractal measures and dimensions. Lectures at Xiangfan, 1995.Google Scholar
[41]Ruelle, D.. Thermodynamic Formalism. Addison-Wesley, Reading, MA, 1978.Google Scholar
[42]Ruelle, D.. Repellers for real analytic maps. Ergod. Th. & Dynam. Sys. 2 (1982), 99107.CrossRefGoogle Scholar
[43]Ruelle, D.. Thermodynamic formalism of maps satisfying positive expansiveness and specification. Nonlinearity 5 (1992), 12231236.CrossRefGoogle Scholar
[44]Sarig, O.. Thermodynamic formalism for countable Markov shifts. Ergod. Th. & Dynam. Sys. 19 (1999), 15651593.CrossRefGoogle Scholar
[45]Sarig, O.. Thermodynamic formalism for null recurrent potentials. Israel J. Math. 121 (2001), 285311.CrossRefGoogle Scholar
[46]Sarig, O.. Existence of Gibbs measures for countable Markov shifts. Proc. Amer. Math. Soc. 131(6) (2003), 17511758.CrossRefGoogle Scholar
[47]Shmerkin, P.. A modified multifractal formalism for a class of self-similar measures with overlap. Asian J. Math. 9 (2005), 323348.CrossRefGoogle Scholar
[48]Seneta, E.. Non-Negative Matrices and Markov Chains (Springer Series in Statistics, XV). Springer, Berlin, 1981.CrossRefGoogle Scholar
[49]Walters, P.. An Introduction to Ergodic Theory. Springer, Berlin, 1982.CrossRefGoogle Scholar
[50]Weiss, B.. Subshift of finite type and sofic systems. Monatsh. Math. 77 (1973), 462474.CrossRefGoogle Scholar
[51]Yayama, Y.. Dimension of compact invariant sets of some expanding maps. Ergod. Th. & Dynam. Sys. 29 (2009), 281315.CrossRefGoogle Scholar
[52]Young, L.-S.. Dimension, entropy and Lyapunov exponents. Ergod. Th. & Dynam. Sys. 2 (1982), 109124.CrossRefGoogle Scholar