Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T18:18:19.577Z Has data issue: false hasContentIssue false

The Rényi entropy function and the large deviation of short return times

Published online by Cambridge University Press:  21 May 2009

NICOLAI HAYDN
Affiliation:
Department of Mathematics, University of Southern California, Los Angeles, CA 90089-1113, USA (email: nhaydn@math.usc.edu)
SANDRO VAIENTI
Affiliation:
Centre de Physique Théorique, UMR 6207, CNRS, Luminy Case 907, F-13288 Marseille Cedex 9, France Universities of Aix-Marseille I, II and Toulon-Var, Fédération de Recherche des Unités de Mathématiques de Marseille, France (email: vaienti@cpt.univ-mrs.fr)

Abstract

We consider the Rényi entropy function for weakly ψ-mixing systems. The first main result of the paper establishes existence and regularity properties. The second main result is obtaining the decay rate for the large deviation of the return time to cylinder sets; we show that it is exponential with a rate given by the Rényi entropy function. Finally, we also obtain bounds for the free energy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Abadi, M.. Sharp error terms and necessary conditions for exponential hitting times in mixing processes. Ann. Probab. 32 (2004), 243264.CrossRefGoogle Scholar
[2]Abadi, M.. Hitting, returning and the short correlation function. Bull. Braz. Math. Soc. 37 (2006), 593609.CrossRefGoogle Scholar
[3]Abadi, M. and Galves, A.. Inequalities for the occurrence times of rare events in mixing processes. The state of the art. Markov Process. Related Fields. 7 (2001), 97112.Google Scholar
[4]Abadi, M. and Vaienti, S.. Large deviations for short recurrence. Discrete. Contin. Dyn. Syst. 21(3) (2008), 729747.CrossRefGoogle Scholar
[5]Afraimovich, V.. Pesin’s dimension for Poincaré recurrence. Chaos 7(1) (1997), 1120.CrossRefGoogle Scholar
[6]Afraimovich, V., Chazottes, J.-R. and Saussol, B.. Pointwise dimensions for Poincaré recurrence associated with maps and special flows. Discrete Contin. Dyn. Syst. 9 (2003), 263280.Google Scholar
[7]Afraimovich, V., Ugalde, E. and Urias, J.. Fractal Dimensions for Poincaré Recurrence (Monograph Series on Nonlinear Sciences and Complexity, 2). Elsevier, Amsterdam, 2006.CrossRefGoogle Scholar
[8]Barreira, L., Pesin, Ya. and Schmeling, J.. On a general concept of multifractality: multifractal spectra for dimensions, entropies and Lyapunov exponents. Chaos 7(1) (1997), 2738.CrossRefGoogle ScholarPubMed
[9]Beck, C. and Schlögl, F.. Thermodynamics of Chaotic Systems. Cambridge University Press, Cambridge, 1993.CrossRefGoogle Scholar
[10]Bessis, D., Paladin, G., Turchetti, G. and Vaienti, S.. Generalized dimensions, entropies and Lyapunov exponents from the pressure function for strange sets. J. Stat. Phys. 51 (1988), 109134.CrossRefGoogle Scholar
[11]Billingsley, P.. Convergence in Probability Measures. Wiley, New York, 1968.Google Scholar
[12]Bonanno, C., Galatolo, S. and Isola, S.. Recurrence and algorithmic information. Nonlinearity 17 (2004), 10571074.CrossRefGoogle Scholar
[13]Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics, 470). Springer, New York, 1975.CrossRefGoogle Scholar
[14]Chazottes, J.-R. and Durand, F.. Local rates of Poincaré recurrence for rotations and weak-mixing. Discrete Contin. Dyn. Syst. 12 (2005), 175183.CrossRefGoogle Scholar
[15]Collet, P., Galves, A. and Schmitt, B.. Fluctuations of repetition times for Gibbsian sources. Nonlinearity 12 (1999), 12251237.CrossRefGoogle Scholar
[16]Csordas, A. and Szepfalusy, P.. Generalized entropy decay rate of one-dimensional maps. Phys. Rev. A 38 (1989), 25822587.CrossRefGoogle Scholar
[17]Doukhan, P.. Mixing Properties and Examples (Lecture Notes in Statistics, 85). Springer, Berlin, 1995.Google Scholar
[18]Eckmann, J.-P. and Ruelle, D.. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57 (1985), 617656.CrossRefGoogle Scholar
[19]Ellis, R. S.. Entropy, Large Deviations and Statistical Mechanics. Springer, Berlin, 1985.CrossRefGoogle Scholar
[20]Ferrero, P., Haydn, N. and Vaienti, S.. Entropy fluctuations for parabolic maps. Nonlinearity 16 (2003), 12031218.CrossRefGoogle Scholar
[21]Galves, A. and Schmitt, B.. Inequalities for hitting times in mixing dynamical systems. Random Comput. Dyn. 5 (1997), 337348.Google Scholar
[22]Grassberger, P. and Procaccia, I.. Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28 (1983), 25912593.CrossRefGoogle Scholar
[23]Grassberger, P. and Procaccia, I.. Dimensions and entropies of strange attractors from a fluctuating dynamics approach. Phys. D 13 (1984), 3454.Google Scholar
[24]Haydn, N., Lacroix, Y. and Vaienti, S.. Hitting and return times in ergodic dynamical systems. Ann. Probab. 33 (2005), 20432050.CrossRefGoogle Scholar
[25]Haydn, N. and Vaienti, S.. The limiting distribution and error terms for return time of dynamical systems. Discrete Contin. Dyn. Syst. 10 (2004), 584616.CrossRefGoogle Scholar
[26]Hirata, M., Saussol, B. and Vaienti, S.. Statistics of return times: a general framework and new applications. Comm. Math. Phys. 206 (1999), 3355.CrossRefGoogle Scholar
[27]Kupsa, M.. Local return rates in Sturmian sub-shifts. Acta Univ. Carolin. Math. Phys. 44 (2003), 1728.Google Scholar
[28]Kurka, P.. Local return rates in substitutive sub-shifts. Acta Univ. Carolin. Math. Phys. 44 (2003), 2942.Google Scholar
[29]Luczak, T. and Szpankowski, W.. A suboptimal lossy data compression based on approximate pattern matching. IEEE Trans. Inform. Theory 43 (1997), 14391451.CrossRefGoogle Scholar
[30]Mañé, R.. Ergodic Theory and Differentiable Dynamics. Springer, Berlin, 1987.CrossRefGoogle Scholar
[31]Paladin, G., Parisi, G. and Vulpiani, A.. Intermittency in chaotic systems and Rényi entropies. J. Phys. A 19 (1986), L997L1001.Google Scholar
[32]Penné, V., Saussol, B. and Vaienti, S.. Dimensions for recurrence times: topological and dynamical properties. Discrete Contin. Dyn. Syst. 5 (1999), 783798.CrossRefGoogle Scholar
[33]Pesin, Ya.. Dimension Theory in Dynamical Systems. University of Chicago Press, Chicago, 1997.CrossRefGoogle Scholar
[34]Rényi, A.. Probability Theory. North Holland, Amsterdam, 1970.Google Scholar
[35]Saussol, B., Troubetzkoy, S. and Vaienti, S.. Recurrence, dimensions and Lyapunov exponents. J. Stat. Phys. 106 (2002), 623634.CrossRefGoogle Scholar
[36]Takens, F. and Verbitsky, E.. Generalized entropies: Rényi and correlation integral approach. Nonlinearity 11(4) (1998), 771782.CrossRefGoogle Scholar
[37]Takens, F. and Verbitsky, E.. Multifractal analysis of local entropies for expansive homeomorphisms with specification. Comm. Math. Phys. 203 (1999), 593612.CrossRefGoogle Scholar